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Abstract

Motivated by the analysis of highly dynamic message-passing systems, i.e. un-
bounded thread creation, mobility, etc. We present a framework for the analysis
of depth-bounded systems. Depth-bounded systems are one of the most expres-
sive known fragment of the π-calculus for which interesting verification problems
are still decidable. Even though they are infinite state systems depth-bounded
systems are well-structured, thus can be analyzed algorithmically. We give an
interpretation of depth-bounded systems as graph-rewriting systems. This gives
more flexibility and ease of use to apply depth-bounded systems to other type
of systems like shared memory concurrency.

First, we develop an adequate domain of limits for depth-bounded systems, a
prerequisite for the effective representation of downward-closed sets. Downward-
closed sets are needed by forward saturation-based algorithms to represent po-
tentially infinite sets of states. Then, we present an abstract interpretation
framework to compute the covering set of well-structured transition systems
Because, in general, the covering set is not computable, our abstraction over-
approximates the actual covering set. Our abstraction captures the essence of
acceleration based-algorithms while giving up enough precision to ensure conver-
gence. We have implemented the analysis in the Picasso tool and show that it
is accurate in practice. Finally, we build some further analyses like termination
using the covering set as starting point.
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Chapter 1

Introduction, motivation,
and related work

1.1 Motivation

Following the evolution of processors toward many-cores architectures and ubiq-
uity of connected devices, applications become more and more parallel and
distributed. In that context we looked at the programming paradigms which
promised to ease the task of programming such applications.

When we started exploring this field we were still at EPFL and the Scala
language was one of our sources of inspiration. The development of the Scala
actor library and its adoption by companies1 caught our interest. The actor
model [65, 28, 6] can be seen as a generalization of the object-oriented pro-
gramming where the objects have their own threads and executes in parallel.
The synchronous method calls (and returns) become messages (and replies) ex-
changed asynchronously. The actor model implementations come as part of the
language, e.g. Erlang, or as libraries, e.g. Scala. The actor paradigm has
been both used to exploit the parallelism available on a single machine and to
create distributed application. In fact, the only difference between a distributed
and single node application is the start-up phase where distributed nodes are
connected and actors spawned on the different machines. This makes the actor
model particularly interesting since it tackles both challenges of scaling up and
out uniformly.

When translating actor programs into a formal model we had our first con-
tact with the π-calculus. The π-calculus provides a great flexibility and unifor-
mity to model the system we were looking at. Also as a calculus, it is minimal
and helps separate distinct concepts. In particular the notion of names is central
and gives insight into the relation between mobility and process creation. How
the two concepts interact and what makes those systems hard to analyze. Un-
fortunately, the π-calculus is a Turing-complete model of computation. Thus,
we started to look for fragments with better decidability properties, i.e. at least
simple reachability questions should be decidable. In the author’s master the-
sis [115], we looked at systems without process creation. In that specific case,

1A list of companies using actor programs can be found at http://akka.io/
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Source code:

class Ping(count: Int, pong: Actor)
extends Actor {

def act() {
var pingsLeft = count - 1
pong ! Ping
loop {

react {
case Pong =>

if (pingsLeft % 1000 == 0)
println("Ping: pong")

if (pingsLeft > 0) {
pong ! Ping
pingsLeft -= 1

} else {
println("Ping: stop")
pong ! Stop
exit()

}
}

}
}

}

π-calculus:

pi0 = pongPing〈pingPong〉|pi1
pi1 = pingPong().pi2

pi2 = pi2a ⊕ pi2b
pi2a = pongPing〈pingPong〉|pi1
pi2b = pongStop〈〉|pi3
pi3 = 0

Control-flow automaton:

pi0start

pi1

pi2 pi3

pong ! Ping

? Pongpong ! Ping

pong ! Stop

Figure 1.1: The Ping actor

we could use the results from [9] to reduce the actor programs to Petri nets and
then check properties such as deadlock-freedom.

The hello world equivalent in the world of actors is the ping-pong example.
In that example, two actors Ping and Pong exchange messages back and forth.
In Figure 1.1 and 1.2, we show the source code of a ping-pong implementation in
Scala2 along which an encoding in the π-calculus and a control-flow automaton
of each actor. The automata carry sends and receives on the edges with a CSP-
like notation, i.e. ! to send a message and ? to receive one. Those two actors
can be encoded into a Petri net as shown in Figure 1.3. The net is composed
of two 1-bounded parts that corresponds to the control-flow automaton of each
actor and of mailbox places which stores the messages between the send and
receives. The red part of the net corresponds to the Ping actor and the blue
part to the Pong actor. More details about this example can be found in [115].

The next step, which started this body of work, was to lift the restriction on
process creation and look for more expressive fragment that would accept some
(limited) form of dynamic process creation.

As source of examples, we looked at the lift web framework [78]. On the
server side, actors are used to encapsulate the client’s sessions. A simple be

2original source code available at http://www.scala-lang.org/node/54, retrieved on 23rd
of April 2013.
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Source code:

class Pong extends Actor {
def act() {

var pongCount = 0
loop {

react {
case Ping =>

if (pongCount % 1000 == 0)
println("Pong: ping "+pongCount)

sender ! Pong
pongCount += 1

case Stop =>
println("Pong: stop")
exit()

}
}

}
}

π-calculus:

po0 = pongStop().po1

+ pongPing(X).po2

po1 = 0

po2 = X〈〉|po0

Control-flow automaton:

po0start

po1

po2

? Stop

X ? Ping X ! Pong

Figure 1.2: The Pong actor

pi0

pi1start

pi2 pi3

pong ! Ping

? Pongpong ! Ping

pong ! Stop

po0start

po1

po2

? Stop

X ? PingX ! Pong

ping state mailboxes pong state

Figure 1.3: Petri net corresponding to a fragment of the ping-pong example
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reasonably realistic example that draw our attention was the chat example3. In
this example exhibit a very specific communication topology which looks like a
star, i.e. all the communication goes through a central actor (the chat room)
to which all the clients are connected. Our intuition was that those systems
have similar monotonicity properties as the fragment without process creation
but requires more expressive modeling than what Petri nets can accommodate.
After some work we found an formal argument of decidability of such system,
again in [115]. What we did not knew at the time is that this fragment had
already been discovered one year earlier by Roland Meyer and was known as
depth-bounded systems [80]. Yet there was still work to do in order to bring this
theoretical result to complete analysis that could be implemented. This thesis
will present (1) how we can finitely represent downward-closed sets for depth-
bounded systems, (2) how to compute an over-approximation of the covering
sets, (3) an implementation of the method in the Picasso tool, and (4) two
further analyses that are built on top of the covering set: weak fair termination
of depth-bounded systems and the computation of state-machine-like interface
for group of interacting objects.

1.2 Preliminaries

We will recall some of the concepts used throughout this documents. Further
general notions, along with some context, are presented in Section 1.3. Finally,
more specific ideas are presented only in the parts that require them.

1.2.1 Posets, lattices, wqos, and bqos

Posets and lattices. A quasi-ordering ≤ is a reflexive and transitive relation
≤ on a set X. In the following X(≤) is a quasi-ordered set. The upward closure
↑ Y of a set Y ⊆ X is ↑ Y = {x ∈ X | ∃y ∈ Y. x ≥ y }. The downward closure
↓Y of Y is ↓Y = {x ∈ X | ∃y ∈ Y. x ≤ y }. A set Y ⊆ X is upward-closed if
Y =↑ Y and downward-closed if Y = ↓Y . An upper bound x ∈ X of a set Y ⊆ X
is such that for all y ∈ Y , y ≤ x. The notion of lower bound is defined dually. A
nonempty set D ⊆ X is called directed if any two elements in D have a common
upper bound in D. A set I ⊆ X is an ideal of X if I is downward-closed and
directed. We denote by Idl(X) the set of all ideals of X and call Idl(X) the
ideal completion of X.

If a quasi-ordering≤ on a setX is antisymmetric it is called a partial ordering
and X(≤) a poset. A poset L(≤) is called a complete lattice if every subset
X ⊆ L has a least upper bound tX and a greatest lower bound uX in L. In
particular, L has a least element ⊥ = uL and a greatest element > = tL. This
lattice will be denoted by L(≤,>,⊥,t,u). For a function f : X → Y and
X ′ ⊆ X we denote by f(X ′) the set { f(x) | x ∈ X ′ }. A monotone function
f : L → L on a complete lattice L(≤,>,⊥,t,u) is called continuous if for
every directed subset D of L, tf(D) = f(tD). Recall Kleene’s fixed point
theorem which states that if f : L → L is continuous then its least fixed point
lfp≤(f) ∈ L exists and is given by t

{
f i(⊥) | i ∈ N

}
.

Let L1(≤1) and L2(≤2) be posets. A Galois connection between L1(≤1) and
L2(≤2) is a pair of functions α : L1 → L2 and γ : L2 → L1 that satisfy for all

3http://demo.liftweb.net/chat
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x ∈ L1, y ∈ L2, α(x) ≤2 y iff x ≤1 γ(y). If γ is also injective then (α, γ) is called
Galois insertion.

Well-quasi-orderings and better-quasi-orderings.

Definition 1 (Well-quasi-order) A pair (X,≤) of a set X and a binary re-
lation ≤ on X is called well-quasi-ordered set (wqo) if and only if (1) ≤ is
a quasi-ordering (i.e., reflexive and transitive) and (2) any infinite sequence
x0, x1, x2, . . . of elements from X contains an increasing pair xi ≤ xj with i < j.

We extend the ordering ≤ to an ordering ≤+ on subsets of X as expected:
for Y1, Y2 ⊆ X, we have Y1 ≤+ Y2 iff for all y1 ∈ Y1 there exists y2 ∈ Y2 if
y1 ≤ y2. For Y ⊆ X we call Y ′ ⊆ X large in Y iff Y ≤+ Y ′. Conversely, we
call Y ′ small in Y if Y ′ ≤+ Y . A subset Y ⊆ X of X is called irreducible if for
any Y1, Y2 ⊆ X, Y ≤+ Y1 ∪ Y2 implies Y ≤+ Y1 or Y ≤+ Y2. Unless specified
otherwise, lifting ordering on the powerset of set uses ≤+. When the context is
clear we will write ≤ instead of ≤+.

Let ≤ be a quasi-ordering on a set X then define the quasi-ordering ≤1 on
subsets of X as follows: for Y1, Y2 ⊆ X, we have Y1 ≤1 Y2 iff there exists an
injection φ : Y1 → Y2 such that for all y1 ∈ Y1, y1 ≤ φ(y1). We are interested
in wqo sets (X,≤) whose powerset is again a wqo with respect to ≤1. For
this purpose we consider Nash-William’s better-quasi-orderings [92]. Better-
quasi-ordered (bqo) sets are particular well-behaved wqo sets. Unlike general
well-quasi-orderings, bqo sets are closed under the powerset construction. The
formal definition of better-quasi-orderings is rather technical and not required
for understanding this thesis. We therefore refer to [92] for the actual definition.
We only state the properties of bqo sets that we will use in our proofs.

Proposition 1 Let (X,≤) be a bqo then

1. (X,≤) is a wqo,

2. (2X ,≤1) is a bqo,

3. (2X ,≤+) is a bqo,

4. every Y ⊆ X is a bqo with respect to the restriction of ≤ to Y .

Properties 1 and 2 are proved in [92]. Properties 3 follows from the fact that
≤+ contains ≤1. Property 4 immediately follows from the definition of bqo sets.

1.2.2 Transition systems

Definition 2 (Labeled transition system) A labeled transition system is a
tuple T = (S, s0,Act ,−→) where S is a set of states, s0 ∈ S an initial state,
Act a set of action labels, and −→ ⊆ S ×Act × S is a transition relation.

Given a labeled transition system T = (S, s0,Act ,−→) We define s
a−→ s′

iff (s, a, s′) ∈ −→. For A ⊆ Act , we define s
A−→ s′ iff s

a−→ s′ for some a ∈ A.
We further define the function Preda that maps a set of states X ⊆ S to the
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set of its direct predecessors, and the function Posta that maps C to its direct
successors for some a ∈ A:

Preda(X)
def
=
{
s ∈ S | ∃s′ ∈ X. s a−→ s′

}
Posta(X)

def
=
{
s′ ∈ S | ∃s ∈ X. s a−→ s′

}
.

Definition 3 (Transition system) A transition system is a tuple T =
(S, s0,−→) which corresponds to the special case of a labeled transition system
with an unique action: (S, s0, {unit},−→).

For the sake of clarity, we omit the unit action when we work with simple
transition systems.

Definition 4 (Reachability set) The reachability set of a transition system
T , denoted Reach(T ), is defined by Reach(T ) = lfp⊆(λX.{s0} ∪ Post(X)).

Definition 5 (Inductive invariant) A set X ⊆ S is called an invariant of T
if Reach(T ) ⊆ X, and X is called inductive if Post(X) ⊆ X.

1.2.3 Abstract interpretation

Abstract interpretation [32] is a framework for the sound approximation of the
semantics of complex systems. The concrete states of the program are mapped
by an abstraction function α (S 7→ A) to elements in A the set of abstract
states. A concretization function γ (A 7→ 2S) that maps an element of the
abstract domain to elements of the concrete domain. We extends α and γ to
set of inputs as expected, i.e. take the union or the join of the results. (α, γ)
are required to form a Galois connection between the sets 2S and A, i.e. for all
s ∈ S and a ∈ A, α(s) ≤ a iff s ∈ γ(a).

Now that we know how to go from concrete to abstract element we need
to lift the transition function to →# (A 7→ A). Similarly, Post is lifted to
Post#(. . .). The correctness of the abstraction is captured by the following
condition: Post(γ(a)) ⊆ γ(Post#(a)). We define the most precise Post# as
post#.S = α ◦ post ◦ γ.

The set A of abstract states needs to be a complete lattice, i.e. for ev-
ery a1, a2 the least upper bound (t) and the greatest lower bound (u) are
defined. This property of A and the monotonicity of the function g will en-
sure the existence of a least fixed point for g (Knaster-Tarski theorem). The
goal of abstract interpretation is to compute the least fixed point of Post#

that contains s0. Another formulation is to say that we want to compute
g∗

def
=
⊔
n≥0(Post#)n(α(s0)).

Even though the fixed point g∗ is guaranteed to exist, it might take an infinite
number of steps to compute it. To avoid this case, the widening operator (∇)
is applied to the increasing sequence g1, g2, . . . to accelerate the convergence of
the algorithm. ∇ fulfill the following conditions: (1) C1

⊔
C2 ⊆ C2∇C2 , (2) for

every infinite sequence s0, s1, . . . the sequence C0, C1, . . ., where C0 = s0, Ci =
Ci−1∇si, is not strictly increasing.
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1.2.4 Graphs

We use a standard notation for (directed) graphs, denoted as tuples of the
form (V,E), with E ⊆ V × V . We define (vertex) labeled graphs over a set of
labels VL as graphs with labels for each vertex and denote them as (V,E, ν)
where ν : V → VL is the vertex-labeling function. For the rest of the paper
we fix VL, a finite set of labels and we denote by Graphs the set of all labeled
graphs with labels VL. Also, unless explicitly stated otherwise, whenever we
say graph, we refer to a labeled graph. A partial graph homomorphism h from
a graph G = (V,E) to G′ = (V ′, E′) written h : G → G′ is a partial mapping
h : V ⇀ V ′ such that (v, w) ∈ E implies (h(v), h(w)) ∈ E′. If h is total, it is
simply called morphism. If it is bijective and its inverse is also a homomorphism,
then it is called isomorphism. Two graphs G and G′ for which an isomorphism
exists are called isomorphic, which we denote by G ∼= G′. For labeled graphs, we
additionally require that (partial) homomorphisms respect the vertex labeling,
i.e. ν′(h(v)) = ν(v), for all nodes v ∈ dom(h). A graph G′ = (V ′, E′) is a
subgraph of a graph G = (V,E), written G′ ⊆ G, if V ′ ⊆ V and E′ ⊆ E.
For a set V ′ ⊆ V of vertices of a graph G = (V,E), we denote by G[V ′] =
(V ′, E∩V ′×V ′) the subgraph induced by V ′. We further denote by � the quasi-
ordering induced by subgraph isomorphisms, i.e., G � H iff G is isomorphic to
a subgraph of H. We write G ∼= H if G and H are isomorphic.

1.3 Related work on the analysis of message-
passing concurrency

Analysis of concurrent system is a problem that has been often studied. How-
ever, due to the complexity, it has never really been solved. On the other hand,
many different analysis techniques have been developed for particular kinds of
systems. After an overview of the π-calculus, we will review the closely related
work using infinite-state model checking techniques to analysis concurrent pro-
grams. Then, we will presents some different approaches to the same problem,
e.g. compositional verification. More specific related work will also be presented
in the relevant chapters.

1.3.1 The π-Calculus

Informally, the π-calculus[88, 89] is considered to be the λ-calculus of message
passing concurrency. It tries to be minimal, but keeps a great modeling power.
It can model synchronous and asynchronous communication, changing network
topologies, dynamic creation of processes, etc. A fundamental concept of the π-
calculus is the notion of names which decouple processes from addresses. Names
are very similar to channels, as processes can send and receive messages through
them. However, processes can use many names and many processes can receive
from the same name. This is different from the actor model in which only a
single actor can receive from a channel. Furthermore, names are also first-class
values that can be sent and created.

13



Syntax. In π-calculus, a process (formula) P is defined by the following

grammar:

P ::= x(y).P (input prefix)
| x〈y〉.P (output prefix)
|

∑
i ai(bi).Pi (external choice)

| P | P (parallel composition)
| !P (replication)
| (νx)P (name creation)
| 0 (unit process)

Remark 1 The internal choice a construct which is generally used to encode
nondeterministic branching is omitted in the above definition. However, it can
be emulated using the following construct:

A⊕B ⇔ (νa)(νb)(a | b | a().b().A+ b().a().B)

We consider systems of recursive equations in the polyadic π-calculus that
have a specific normal form inspired by Amadio and Meyssonnier [9].

Assume a countable infinite set of names with typical elements x, y and
a countable infinite set of process identifiers with typical elements A,B. We
assume that each name and identifier has an associated arity in N. We denote
by ~x a (possibly empty) vector over names and denote by [~x/~y] a substitution
on names. Hereby, a prefix π is either an input prefix of the form x(~y) or an
output prefix of the form x(~y). All parameter vectors occurring in process terms
must respect the arities of names and identifiers. We call the terms of the form
A(~x) threads. We write Π in order to denote indexed parallel composition and
Σ for indexed external choice. We allow both input and output prefixes below
Σ and generalize the reduction rules accordingly. We further write (ν~x) for
(νx1) . . . (νxn) where ~x = x1, . . . , xn. An occurrence of a name x in a process
term P is called free if it is not below a (νx) or an input prefix y(x). We denote
by fn(P ) the set of all free occurring names in P . We say that P is closed if
fn(P ) = ∅.

A process T is a pair (I, E) where I is an initial configuration and E is a
finite set of parametric equations A(~x) = P such that (1) every process identifier
in P and I is defined by exactly one equation in E and (2) fn(P ) ⊆ {~x}. We
assume that each equation in E has the following form:

A(~x) = Σ
i∈I

πi.(ν~xi)( Π
j∈Ji

Aj(~xj))

A configuration is a closed process term of the following normal form:

(ν~x)( Π
i∈I

Ai(~xi))

Similar normal forms can be found in [9] and in [80] under the name of anchored
fragment.

Operational semantics. Informally, threads are doing the computations
in a π-calculus process. On the other hand, the names give the topology of the
‘network’ of threads. They do not perform computations, but are the support
for the messages.
Here is an informal description of the types of formula in the grammar:
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x〈z〉.P | x(y).Q→ P | Q[z/y]

a〈b〉.P |
∑
i∈I ai(bi).Qi → P | Qx[b/bx] where ax = a

P → Q⇒ P | R→ Q | R
P → Q⇒ (νx)P → (νx)Q

P ≡ P ′ ∧Q ≡ Q′∧ → Q⇒ P ′ → Q′

Figure 1.4: Reduction rules for π-calculus

P ≡ Q if P and Q are equal up to renaming of bound names
P | Q ≡ Q | P (commutativity of |)
(P | Q) | R ≡ P | (Q | R) (associativity of |)
P | 0 ≡ P (elimination of unit)
(νx)(νy)P ≡ (νy)(νx)P (reordering of restricted names)
(νx)0 ≡ 0 (elimination of unused name)
(νx)(P | Q) ≡ P | (νx)Q if x /∈ fn(P ) (scope extrusion)

Figure 1.5: Axioms defining the structural congruence relation ≡

• x(y).P means that a name is received from x, bound to y, and the process
continues as P .

• x〈y〉.P means that the name y is send on x and the process continues as
P .

•
∑
i ai(bi).Pi receive one of the available messages or blocks when there is

no message at all.

• P1 | P2 denotes the concurrent execution of P1 and P2.

• !P means that P can be replicated as many time as needed.

• (νx)P creates a new fresh name x in the scope of P .

• 0 is a process whose execution is finished.

Here is a partial overview of the evaluation of a π-calculus process. The
evaluation mixes the application of reduction rules and congruence rules. The
reduction rules are detailed in Figure 1.4 and the congruence rules in Figure 1.5.
The first two reduction rules are the most important as they corresponds to the
reception of a message. For more details, refer to [87, 88, 89].

The congruence relation can be extended to terms with replication by adding
the axioms in Figure 1.6. The resulting congruence relation (which we also
denote by ≡) corresponds to the extended congruence relation studied in [43],
where it is also shown to be decidable. Note that ! distributes over parallel
composition but not restriction.

Figure 1.1 and 1.2 shows Scala actors abstracted to the π-calculus.
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!P ≡ P |!P (replication)
!(P | Q) ≡ !P | !Q (distributivity of !)
!!P ≡ !P (idempotence of !)
!0 ≡ 0 (replication of unit)

Figure 1.6: Additional axioms defining the extended structural congruence

Transition systems defined by π-calculus equations. Given a process
T = (I, E), we define a transition relation →E on configurations that captures
the usual π-calculus reduction rules as follows. Let P and Q be configurations
then we have P →E Q if and only if the following conditions hold:

1. P ≡ (ν~u)(A(~v) | B(~w) | P ′),

2. the defining equation of A in E is of the form A(~x) = x(~x′).(ν~x′′)(M)+M ′,

3. the defining equation of B in E is of the form B(~y) = y(~y′).(ν~y′′)(N)+N ′,

4. σ = [~v/~x, ~w/~x′, ~zA/ ~x′′, ~w/~y, ~zB/ ~y′′] where ~z = ~zA, ~zB are fresh names,

5. σ(x) = σ(y),

6. Q ≡ (ν~u, ~z)(σ(M) | σ(N) | P ′).

We denote by →∗E the reflexive transitive closure of the relation →E . We say
that a configuration P is reachable in process T if and only if I →∗E P . Finally,
we denote by Reach(T ) the set of all reachable configurations of process T .

1.3.2 State-space exploration approaches

The simplest model for concurrent program is probably a finite state automaton.
The parallel composition of two processes is simply the product of two automata.
Unfortunately, this approach runs directly into the state explosion problem. The
number of state in the automaton is exponential in the number of processes
considered. Also, this approach is limited to a fixed number of processes, i.e. no
(or bounded) process creation. Thus, more general models have been considered.

Petri nets. Petri nets, originally developed by Carl Adam Petri to model
chemical reactions [95], found applications in the modeling of concurrent and
distributed processes. A Petri net can be seen as a generalization of finite
automaton where a state in not a single place (or state) but a bag of places,
usually represented by drawing the appropriate number of token into the places.
Furthermore, the transition relation moves set of token from places to places,
rather than a single token from one place to another. More formally:

Definition 6 (Petri net) A Petri net is a tuple (S, T,W,M0) where S is a
finite set of places, T is a finite set of transitions, W : (S, T ) ∪ (T, S) → N is
a (multi)set of arcs, and M0 is the initial marking. A marking M is a map:
S → N. We denote by M(S) the set of all markings over S. A transition t ∈ T
is fireable at M iff for all s ∈ S, M(s) ≥ W (s, t). Firing t at M gives M ′

defined as M ′(s) = M(s)−W (s, t) +W (t, s).
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Given an initial marking M0 and a target marking Mt, we can ask whether
Mt can be covered from M0, i.e. if there is marking Mt′ and a sequence of tran-
sition such that M0 −→∗ Mt′ and Mt′ ≥Mt where ≥ is the pointwise ordering
on the marking. We will define formally the covering problem and covering set
shortly after the introduction of well-structured transition systems. The cover-
ing problem is sometime known as the control-state reachability problem, since
we can ask question such as “can the system reach a configuration where a pro-
cess gets into an error state?” On the other hand, it is weaker than reachability.
For instance, we cannot check that a program is deadlock-free using the covering
problem. The covering set is the set of all states that can be covered.

The (perhaps) most common method to answer the covering question is to
compute the Karp&Miller tree [73]. The Karp&Miller tree is an reachability
tree augmented with acceleration. Acceleration is used to compute the limit of
sequences of transition that can be fired infinitely often. Markings are extended
to ω-markings: S → N∪ {ω} where omega is a limit representing an arbitrarily
large number of token. Figure 1.7 shows a simple Petri net and its corresponding
Karp&Miller tree.

Definition 7 (Karp&Miller tree [73]) The Karp&Miller tree for a Petri
net P = (S, T,W,M0) is a labelled rooted tree (V,E, r, l) where V is the set of
vertices, E (⊆ V ×T ×V ) is the set of edges, r (∈ V ) is the root, and l (V → S)
is the labelling function.

Let a ≺ b denotes that a is an ancestor of b. Additionally:

• The root r is labelled with M0, i.e. l(r) = M0.

• For every node n, if there exists p such that p ≺ n ∧ l(p) = l(n) then n
has no successor. Otherwise, n has one successor for every fireable t ∈ T .

• For every edges (m, t, n) ∈ E,if there is p such that p ≺ m∧ l(p) ≤ t(l(m))

then l(n)(i) =
{

ω
t(l(m))(i)

if l(p)(i)<t(l(m))(i)
otherwise . Otherwise, l(n) = t(l(m))

The union of all the leaves of the Karp&Miller tree is the covering set of the
corresponding Petri net P . Intuitively, the covering set is a set the contains all
the markings that P can cover.

There exists many extension for Petri nets. It is worth mentioning transfer
and reset nets which enrich Petri nets with edges that consume all the tokens in a
place, either to move them in another place (transfer) or remove them completely
(reset). These two extensions are monotonic, thus the covering problem is still
decidable. However, it requires different algorithms. More details can be found
in [49]. Petri nets can also be extended with inhibitory arcs (not fireable while
a place is not empty). But this extension is not monotonic anymore and it
becomes a Turing-complete model of computation.

Well-structured transition systems (WSTS). A general principle behind
the analysis of Petri net and other infinite state systems like lossy-channel sys-
tems [5] was identified and formalized in the notion of well-structured transition
systems [3, 49]. WSTSs rely on the monotonicity of the transitions and the
structure/ordering of the states to make some problem like the covering prob-
lem decidable. Since their formalization WSTS are one of the main workhorses
to prove decidability results.
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Figure 1.7: Petri net and its Karp&Miller tree [73, Example 4.1]
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Definition 8 (Well-structured transition systems) A well-structured
transition system is a transition system T = (S, s0,→,≤) where S is a set of
states, s0 ∈ S an initial state, →⊆ S × S a transition relation, and ≤ ⊆ S × S
a relation satisfying the following two conditions:

well-quasi-ordering : ≤ is a well-quasi-ordering on S; and

compatibility : ≤ is upward compatible with respect to→, i.e., for all s1, s2, t1
such that s1 ≤ t1 and s1 → s2, there exists t2 such that t1 →∗ t2 and
s2 ≤ t2.

The compatibility property is also known as the monotonicity property. It
also comes in different flavor. It can be strict (s1 < t1 ⇒ s2 < t2) or not. There
is also a version known as strong monotonicity (t1 → t2). Strong means that
one transition has to be simulated by exactly one transition.

Even though S only needs to be a quasi-order in practice it is most of the
time a partial order (also antisymmetric). Hence we might also refer to the
state-space of a WSTS as a poset.

Definition 9 (Covering problem) Given a WSTS (S, s0,→,≤) and a state
t ∈ S, the covering problem asks whether there exists a state t′ ∈ S such that
s0 →∗ t′ and t ≤ t′.

The covering problem is decidable for WSTS by using a backward search
algorithm [3]. An application of the covering problem is asks whether, given a
bad state s, there exists a reachable state s′ of the system that covers the bad
state, i.e., s0 →∗ s′ and s ≤ s′.

Definition 10 (Covering set) The covering set of a well-structured transi-
tion system T , denoted Cover(T ), is defined by Cover(T ) = ↓ lfp⊆(λX.↓S0 ∪
post(X)).

Unfortunately, some other problems like computing the covering set which
are decidable for Petri nets are not decidable for WSTS [41].

Domains of limits. More recently, generic forward search algorithms,
such as the Expand-Enlarge-Check algorithm [52], were developed and classes
of WSTS where the covering set is computable were identified [47, 48, 27]. Those
algorithm rely on so-called adequate domain of limits (ADL) [52, 47]. An ade-
quate domain of limits for the well-quasi-ordering of a WSTS provides an effec-
tive representation of all downward-closed sets of configurations, i.e., ADLs are
the key for ensuring termination of forward analyses of WSTSs. The concept of
limits have been formalized using an axiomatization [52], the topological notion
of Noetherian space [58, 59, 47], and the order-theoretic ideal completion [47].

Process Calculi and WSTS. The use of the WSTS framework to analyze
π-calculus and other related process calculi is not new [9, 94, 80, 82]. The
fragment of the π-calculus known as depth-bounded systems [80] is one of the
most general. It is defined semantically as we will see later in Section 1.3.3, but
it subsumes many fragments that are defined syntactically [9, 35], in terms of
type systems [94, 106, 22], or as abstraction [40].
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1.3.3 Depth-bounded systems

The techniques we will develop in the rest of this document are mostly targeted
toward depth-bounded systems [80]. We use depth-bounded systems due to the
flexibility they offer in modeling concurrent and distributed systems. For the
moment, we use the most common definition of depth-bounded systems which
is based on the π-calculus. In Chapter 4, we will transfer those ideas to an
even more flexible graph-rewriting framework. In the rest of this section, we are
dealing with π-calculus processes in the normal form defined in Section 1.3.1.

Definition 11 (Nesting depth (of restriction)) The nesting of restrictions
nestν of a process term is measured recursively as follows nestν(0) =
nestν(A(~x)) = nestν(P1 + P2) = 0, nestν((νx)P ) = 1 + nestν(P ), and
nestν(P1 | P2) = max {nestν(P1),nestν(P2)}.

Definition 12 (Depth) The depth of a process term P is the minimal nesting
of restrictions of process terms in the congruence class of P :

depth(P ) = min {nestν(Q) | Q ≡ P } .

Definition 13 (Depth-Boundedness) A set of configurations C is called
depth-bounded if there is kD ∈ N such that depth(P ) ≤ kD for all P ∈ C. A
process T is called depth-bounded if its set of reachable configurations Reach(T )
is depth-bounded.

Example 1 The following equations describe a simple client-server system
where a server can spawn clients and answer their requests. The server is given
by process identifier Server(x, y). The channel x is used for communication with
clients. An Env(ironement) process is used to create of new clients.

Server(x) = x(z).(Reply(z) | Server(x))

Client(u, x) = (u().Client(u, x))⊕ (Client(u, x) | Request(x, u))

Env(x) = (νu)(Client(u, x)) | Env(x)

Reply(u) = u().0

Request(x, u) = x(u).0

If the initial configuration is given by (νx)(Env(x) | Server(x)) then the depth
of all reachable configurations is bounded by 2.

Definition 14 (wqo for depth-bounded systems) We define the following
natural quasi-ordering ≤ on configurations of processes: P ≤ Q if and only if
P ≡ (ν~x)P ′ and Q ≡ (ν~x)(P ′ | R) for some process term P ′, R.

Proposition 2 (Meyer [80])

• ≤ is a well-quasi-order on depth-bounded sets of configurations.

• A depth-bounded process T = (I, E) induces a well-structured transition
system (Reach(T ), I,→E ,≤).
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Notice that the system is well-structured only on Reach(T ). This is a seman-
tic restriction and cannot be checked automatically. In fact, it is undecidable
to determine whether a system is depth-bounded.

Further works by Meyer [81, 82] link π-calculus to Petri nets, using a bound
both in depth and in breadth. In Section 3.3 and 3.4 we will show how Petri nets
and depth-bounded systems are related in term of state-space. Intuitively, Petri
nets cannot represent a client-server system with unboundedly many clients,
each having unboundedly many messages in its mailbox. A Petri net cannot only
represent unboundedly many clients with bounded mailboxes or finitely many
clients with unbounded mailboxes. A depth-bounded system can represent both
at the same time.

1.3.4 Other approaches to the verification of mobile pro-
cesses.

Instead of exploring the state-space of all the processes executing as the same
time, like the methods we saw above. Compositional verification methods have
been studied. The idea is to look only at processes in isolation and compose
them in an appropriate framework which can prove global properties form the
local information of each process. Those methods sidestep the state-explosion
problem at the cost of automation. Except for particular cases those methods
requires some human insight about how processes should be composed.

Compositional verification has been studied in the context of model-checking,
e.g. [8], but in a context where mobility occurs session types [67, 18] and
contracts [68, 101, 26, 25] are more adapted. Session and contracts are based
on the behavioral types Such types describe the interactions that one processes
can do as contracts or the composition of multiple processes as protocols. This
approach allows the verification of stronger properties like deadlock freedom
but on a more constrained classes of systems. Those type systems suffer from
restrictions that correspond to what can be proved safe in a set of rules where
type checking is decidable. Depending on the program one needs to choose the
appropriate typing systems and many safe programs do not type.

Session types. The idea behind session types is that composing processes
leads to protocols. There are two kinds of types: (1) the protocol describing
the overall behavior of all the processes, (2) the end-point types describing the
behavior of the individual participants. Since composing processes is extremely
difficult, session types ask the user to give the protocol. Then it is possible
to project the protocol onto the end-points (individual processes), and check
that the end-points implement their role in the protocol. Instead of the clas-
sical bottom-up typing, session types work top-down. Session Types provide
strong guarantees in term of progress and preservation. However, the number
of participants in a protocol is either fixed [67] or given as a parameter [18].

Contracts. A different approach to typing message passing processes are con-
tracts. Contracts are closer to the usual typing systems in the sense that pro-
cesses are typed bottom-up. A contract defines the operations that a process
must do. Contracts have a notion of duality with the environment. The pro-
cess mirror the environment by swapping sending and receiving. Subtyping
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(behaves the same when communicating with the same partner) is also an im-
portant component. There exists a typing system [68] for π-calculus without
channel creation where types are CCS processes. Then it is possible to reason
on CCS which is easier than reasoning on the π-calculus. [101, 26] bring back
the restriction operator, but at the expense of decidability. Furthermore, an
assume-guarantee rule is given for CCS in order to check the processes compo-
sitionally. Discharging the hypotheses of such rules reduces to checking weak
open simulation of CCS processes. The weakness of that approach is the model
checking of CCS processes is undecidable. [25] uses a different approach and
refines the traditional analysis by distinguishing between multiple terminal be-
haviors: deadlock, success, and an autonomous process taking infinitely many
internal steps.

1.4 Contributions

This work puts together the different pieces needed to build an analyzer for
depth-bounded systems.

Our first contribution is the development of an adequate domain of limits
for depth-bounded processes, presented in Chapter 2. For this purpose we
show that downward-closed sets of configurations in depth-bounded processes
are characterized by finite unions of regular languages of unranked trees.

In Chapter 3 we propose an abstract interpretation framework that computes
precise approximation of covering sets for WSTS, capturing the key insights of
acceleration-based algorithms, yet is guaranteed to terminate. The abstract do-
main of our analysis is based on the ideal completion of the well-quasi-ordering
of the analyzed WSTS and an accompanying widening operator. The widen-
ing operator mimics the effect of acceleration, but loses enough precision to
guarantee termination.

In Chapter 4 we present Picasso, a static analyzer that takes a DBS as input
and computes an over-approximations of its covering set. However, Picasso
implements an algorithm that exploits the monotonic structure of DBS and
often yields precise results. Picasso implements the domain of limits and the
abstract interpretation framework described in the earlier parts. We describe
the structure of Picasso, some of the key implementation details and how
we have used Picasso to automatically verify safety and liveness properties of
complex concurrent systems such as nonblocking and distributed algorithms, as
well as sequential object-oriented code.

Finally, we show how the covering set can be use as the starting point of
further analysis. In Section 5.1, we focus on termination of depth-bounded
systems and the implementation of that method in Picasso. In Section 5.2, we
generalize the notion of state-machine interface from single object to groups of
interacting objects.
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Chapter 2

Toward a forward analysis
of depth-bounded systems:
domain of limits

Depth-bounded processes form one of the most expressive known fragments of
the π-calculus for which interesting verification problems are still decidable.
In this paper we develop an adequate domain of limits for the well-structured
transition systems that are induced by depth-bounded processes. An immediate
consequence of our result is that there exists a forward algorithm that decides
the covering problem for this class. Unlike backward algorithms, the forward
algorithm terminates even if the depth of the process is not known a priori.
More importantly, our result suggests a whole spectrum of forward algorithms
that enable the effective verification of a large class of mobile systems.

This chapter is joint work with Thomas A. Henzinger and Thomas Wies.
It was published in FoSSaCS 2010 as “Forward Analysis of Depth-Bounded
Processes” [112].

2.1 Motivation

We are interested in the verification of π-calculus processes [88, 89], i.e., message
passing systems that admit unbounded creation of processes and name mobility.
We can think of a configuration of such a system as a graph [86, 70]. The
vertices of the graph are the processes labelled by their current local state. Edges
between processes indicate whether the respective processes share a channel, i.e.,
whether they are able to communicate with each other. We refer to such a graph
as the communication topology of a configuration.

The most expressive known fragment of the π-calculus for which interest-
ing verification problems are still decidable is the class of depth-bounded pro-
cesses [80]. Intuitively, in a depth-bounded process there is a bound on the
length of all simple paths in all reachable configuration graphs (the graphs may
contain cycles). A typical example of a depth-bounded process is a server-client
architecture where a server answers requests of clients and where each client
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only knows the name of the server but not the names of other clients. Both
the number of simultaneously active clients as well as the number of pending
requests for the server can be unbounded.

In this chapter we are concerned with the covering problem for depth-
bounded processes. More precisely about the representation of downward-closed
sets for depth-bounded systems which are a key component of forward algo-
rithms to solve the covering problem. Intuitively, the covering problem asks
whether a system can reach a configuration that contains some process that is
in a local error state. A decision procedure for the covering problem therefore
enables the automated verification of an interesting class of safety properties.
Meyer showed in [80] that depth-bounded processes are well-structured tran-
sition systems (WSTS) [45, 3, 49]. This implies that the covering problem
for depth-bounded processes of known depth can be decided using a standard
backward algorithm for WSTSs. The question whether the covering problem is
decidable for the entire class of depth-bounded processes was open.

We present the first forward algorithm for this problem. Unlike backward
algorithms, our algorithm terminates even if the bound of the system is not
known a priori. We thus show that the covering problem is decidable for the
entire class. Our algorithm is an instance of the expand, enlarge, and check
algorithm schema for WSTSs that exhibit a so-called adequate domain of limits
(ADL) [52, 47]. An adequate domain of limits for the well-quasi-ordering of a
WSTS provides an effective representation of all downward-closed sets of con-
figurations, i.e., ADLs are the key for ensuring termination of forward analyses
of WSTSs. Our main technical contribution is the development of an adequate
domain of limits for depth-bounded processes. For this purpose we show that
downward-closed sets of configurations in depth-bounded processes are charac-
terized by finite unions of regular languages of unranked trees.

Besides our theoretical interest in forward analysis of π-calculus processes
there are also practical considerations that make forward algorithms more ap-
pealing than their backward counterparts. A backward analysis needs to con-
sider all possible unifications between names that may enable processes to syn-
chronize. A forward analysis instead knows which names are equal and which
are not. In practice, the search space of a forward analysis is therefore of-
ten significantly smaller than the search space of a backward analysis. We
give an example that demonstrates this phenomenon in Section 2.2. While the
forward algorithm that we consider in this paper is mainly of theoretical in-
terest, our adequate domain of limits suggests a whole spectrum of forward
algorithms that enable the effective verification of a large class of mobile sys-
tems. This spectrum ranges from acceleration-based algorithms in the style of
the Karp&Miller tree [73, 44, 48] to approximation algorithms based on abstract
interpretation [32].

2.2 The Covering Problem for Depth-Bounded
Processes

Given a depth-bounded process T = (I, E) which induces a WSTS
(Reach(T ), I,→E ,≤). We are interested in the covering problem for this WSTS.
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Forward vs. backward algorithms. The standard algorithm [3] for decid-
ing the covering problem for a WSTS is a backward algorithm that works as
follows. Starting from the configuration t that is to be covered one computes
the set of backward-reachable configurations of the upward closure of t and
then checks whether this set contains the initial configuration. The well-quasi-
ordering ensures that the backward analysis terminates.

In the WSTS (Reach(T ), I,→E ,≤) that is induced by a depth-bounded pro-
cess T we implicitly restrict the transition relation→E to the forward-reachable
configurations Reach(T ). The predecessor configurations with respect to this
restricted transition relation are not effectively computable, i.e., the backward
algorithm is not applicable to this WSTS. On the other hand, predecessor config-
urations for the unrestricted transition relation are effectively computable, but
the induced set of backward-reachable configurations is in general not depth-
bounded (and thus not well-quasi-ordered by ≤). A backward algorithm can
only be effectively applied to the WSTS (C(k), I,→E ,≤). Here C(k) is the set
of all configurations of depth k and k is the maximal depth of configurations in
Reach(T ), i.e., Reach(T ) ⊆ C(k). Since k must be known in advance, Meyer’s
result only implies that the covering problem is decidable for depth-bounded
processes of known depth. We will show that there exists a forward algorithm
that overcomes this limitation.

Besides the theoretical deficiency of backward algorithms there is also a
practical reason why forward algorithms are more attractive. We explain this
with an example.

Example 2 Consider the parameterized process T (n) for n ∈ N that is given
by the initial configuration I(n):

(νx, z, y, y1, . . . , yn)(Buffern(x, z, y1, . . . , yn) | Env(z, x, y))

and the equations E(n):

Buffer0(x, z) = x(y).Buffer1(x, z, y)

Buffer i(x, z, y1, . . . , yi) = x(y).Buffer i+1(x, z, y1, . . . , yi, y)

+ z(y1).Buffer i−1(x, z, y2, . . . , yi) for 0 < i < n

Buffern(x, z, y1, . . . , yn) = z(y1).Buffern−1(x, z, y2, . . . , yn)

Env(z, x, y) = x(y).(νu)(Env(z, x, u)) + z(u).Env(z, x, u)

The process T (n) models a finite FIFO buffer that stores data sent by the en-
vironment in a queue of maximal length n. The queue is modeled using the
parameter lists of the process identifiers Buffer i.

Suppose we want to check that the configuration P ≡ (νx, z)(Buffer0(x, z))
is coverable in T (n). The number of representatives for the set of configurations
that are backward-reachable from the upward-closure of P grows exponential in
n. The reason is that in one of the continuations of the choices that define
Buffer i(x, z, y1, . . . , yi) the parameter y1 does not occur. A backward algorithm
that computes the predecessors for the execution of this choice has no knowledge
about the name that the parameter y1 denotes. It has to guess whether it is
a fresh name or whether it is equal to one of the other names appearing in
the continuation. On the other hand, a forward algorithm always knows which
name the parameter y1 denotes. Therefore, the set of representatives for the
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configurations that are forward reachable from I(n) grows only linear in n. It is
this phenomenon that makes forward algorithms more appealing for the analysis
of π-calculus processes.

2.3 An Adequate Domain of Limits

Most forward algorithms for solving the covering problem of WSTSs compute
the cover, i.e., the downward-closure of the forward-reachable configurations
and then check whether this set contains the configuration to be covered. In
order to effectively compute the cover, one needs to find a completion of the wqo
set that contains all the limits of downward-closed sets. The canonical example
is the completion for the well-quasi-ordering on markings of Petri nets. It is
given by vectors over the set Nω of natural numbers extended with the limit
ordinal ω. This completion is the basis for the Karp-Miller algorithm [73] that
computes the covering tree of a Petri net. The notion of an adequate domain of
limits [52, 47] formalizes the completions of wqo sets.

An adequate domain of limits (ADL) [52] for a well-quasi-ordered set (X,≤)
is a tuple (Y,v, γ) where Y is a set disjoint fromX; (L1) the map γ : Y ∪X → 2X

is such that γ(z) is downward-closed for all z ∈ X ∪ Y , and γ(x) =↓{x} for all
x ∈ X; (L2) there is a limit point > ∈ Y such that γ(>) = X; (L3) z v z′ if
and only if γ(z) ⊆ γ(z′); and (L4) for any downward-closed set D of X, there
is a finite subset E ⊆ Y ∪X such that γ(E) = D, where γ is extended to sets
as expected: γ(E) =

⋃
z∈E γ(z). A weak adequate domain of limits (WADL)

[47] for (X,≤) is a tuple (Y,v, γ) satisfying (L1),(L3), and (L4). Note that
any weak adequate domain of limits can be extended to an adequate domain of
limits.

2.3.1 Limit Configurations

We now describe a weak adequate domain of limits for depth-bounded configu-
rations. In order to finitely represent the limits of infinite downward-closed sets
we need to be able to express that certain subterms in a configuration can be
replicated arbitrarily often. A natural solution to this problem is to extend con-
figurations with the replication operator ! that is used as a recursion primitive in
alternative definitions of the π-calculus [88, 89]. Instead of using replication to
express recursion, we use it to effectively represent infinite sets of configurations.

A limit configuration E is constructed recursively from process identifiers
A(~x), parallel composition E1 | E2, name restriction (νx)E and replication !E.
We extend the congruence relation ≡ from configurations to limit configurations
by adding the axiom !E ≡ (E | !E). We carry over the definitions of the transi-
tion relations of processes and the quasi-ordering ≤ from configurations to limit
configurations by replacing the congruence relation in the definitions with the
extended congruence relation. We then define the denotation γ(E) of a limit
configuration E as its downward-closure restricted to non-limit configurations:

γ(E) = {P | P configuration and P ≤ E }

The quasi-ordering v on limit configurations that is required for the adequate
domain of limits is defined by condition (L3).
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Example 3 Consider again the client-server process presented in Example 1.
The following limit configuration denotes the cover of this process:

(νx)((νy)(New(y) | Server(x, y))
| !(νz)(Client(z, x) | Answer(z))
| !(νz)(Client(z, x) | Request(x, z)))

We now state the main technical result of this paper. Given a finite set of
process identifiers PI , we denote by C(PI , k) the set of all configurations over
PI that have depth at most k. We further denote by L(PI , k) the set of all limit
configurations over PI whose elements denote sets of k-bounded configurations
such that L(PI , k) itself does not contain the configurations in C(PI , k).

Theorem 1 Let k ∈ N and let PI be a finite set of process identifiers. Then
(L(PI , k),v, γ) is a weak adequate domain of limits for the well-quasi-ordered
set (C(PI , k),≤).

In the remainder of this section we prove Theorem 1.

2.3.2 Tree Encoding of Depth-Bounded Configurations

We first relate depth-bounded configurations with graphs of bounded tree-depth,
which in turn can be encoded into trees of bounded height. The construction
is similar to the one used in [80]. However, we prove that the tree encodings
of depth-bounded configurations are not just well-quasi-ordered, but in fact
better-quasi-ordered.

Communication topology. We use standard notation for (undirected)
graphs. A labelled graph over a finite set of labels L is a tuple (G, lv, le) where
G is a graph, lv : V (G)→ L is a vertex labelling function, and le : V (E)→ L is
an edge labelling function.

Let T = (I, E) be a process. Let further n be the maximal arity of all vectors
of names occurring in I and E , and let A be the set of all process identifiers
occurring in I, E . Define the set of labels L

def
= 2{0,...,n} ∪ A ∪ {•} where • is

distinct from all process identifiers. Let P be a configuration of process T of
the form

(ν~x)(Πj∈JAj(~xj))

where ~x = x1, . . . , xm, and the index sets {1..m}, and J are disjoint. The
function ct maps P to a labelled graph over L as follows: the graph consists
of vertices corresponding to threads and names occurring in the configuration.
Each thread vertex is labelled by the process identifier of the corresponding
thread in the configuration. There are edges between thread vertices and name
vertices indicating that one of the names in the parameter vector of the thread
is the name associated with that name vertex. Formally, ct(P ) is a graph
((V,E), lv, le) where

• V is a union of disjoint sets of vertices {vj}j∈J and {v1, . . . , vm},

• E = { {vj , vi} | j ∈ J ∧ 1 ≤ i ≤ m ∧ xjr = xi for some 1 ≤ r ≤ n },

• lv(vk) =

{
Ak if k ∈ J
• otherwise,
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Figure 2.1: ct( (νx)(Server(x) | (νy)(Client(y, x)|Messages(x, y))) )

• le({vj , vi}) = { r | j ∈ J ∧ 1 ≤ i ≤ m ∧ xjr = xi }.

We call ct(P ) the communication topology of configuration P . Figure 2.1 shows
an example.

Tree-depth. We relate depth-bounded sets of configurations to sets of graphs
of bounded tree-depth [93]. A path π in a graph G is a sequence v1, . . . , vn of
vertices in V (G) that are consecutively connected by edges in E(G). We say that
π connects vertices v1 and vn. We call π simple path if for all 1 ≤ i < j ≤ n,
vi 6= vj . A tree T is a graph such that every pair of distinct vertices in T
is connected by exactly one path and this path is simple. A rooted tree is a
tree with a dedicated root vertex. A rooted forest is a disjoint union of rooted
trees. The height of a vertex v in a rooted forest F , denoted height(F, v), is the
number of vertices on the path from the root (of the tree to which v belongs)
to v. The height of F is the maximal height of the vertices in F . Let v, w be
vertices of F and let T be the tree in F to which w belongs. The vertex v is an
ancestor of vertex w in F , denoted v � w, if v belongs to the path connecting
w and the root of T . The closure clos(F ) of a rooted forest F is the graph
consisting of the vertices of F and the edge set { {v, w} | v � w, v 6= w }. The
tree-depth td(G) of a graph G is the minimum height of all rooted forests F such
that G ⊆ clos(F ). The tree-depth of a labelled graph is the tree-depth of the
enclosed graph. Finally, we say that a set of graphs G has bounded tree-depth if
there exists k ∈ N such that all graphs G ∈ G have tree-depth at most k.

Proposition 3 A set of configurations C is depth-bounded iff its communication
topologies ct(C) have bounded tree-depth.

The proof of Proposition 3 uses Meyer’s characterization of sets of depth-
bounded configurations in terms of sets of graphs that are bounded in the length
of the simple paths [80, Theorem 1]. One can easily show that a set of graphs
is bounded in the length of the simple paths if and only if it has bounded
tree-depth.

We now relate the ordering on configurations P ≤ Q with an ordering on
the underlying communication topologies. Given two labelled graphs G1 and
G2, we say G1 is (isomorphic to) a subgraph of G2, written G1 ↪→ G2, iff there
exists an injective label-preserving homomorphism from G1 to G2.
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Lemma 1 Let P and Q be configurations. Then P ≤ Q iff ct(P ) ↪→ ct(Q).

Proof. Recall that P ≤ Q means the P ≡ (νx)P ′ and Q ≡ (νx)(P ′ | (νy)Q′).
Then the proof follows directly from the construction of ct. Notice that the
homomorphism from P to Q restricted to the nodes with label • corresponds
to the name substitution done in ≡. �

Tree encoding. A labelled rooted tree over a finite set of labels L is a pair
(T, l) where T is a rooted tree and l : V (T )→ L a vertex labelling function. We
extend the relation ↪→ to rooted labelled trees, as expected, and we say that a
tree T1 is a subtree of tree T2 whenever T1 ↪→ T2 holds. In the following, we fix
a finite set of labels L. Let Lk be the set of all isomorphism classes of labelled
graphs G over labels L∪(L×{1..k}) such that G has at most k vertices. Clearly,
since L is finite, Lk is finite.

Given a labelled graph G over labels L that has tree-depth at most k, we
can construct a labelled rooted tree (T, l) over the set of labels Lk from G as
follows. First, let F be a rooted forest of minimal height whose closure contains
the graph induced by G. The rooted tree T is constructed from the forest F by
extending F with a fresh root vertex r that has edges to all the roots of the trees
in F . The labelling function l is defined as follows. Let v ∈ V (T ) be a vertex in
T . If v = r then l(r) is the empty graph. Otherwise v is a vertex in F (and thus
in G). Let P be the subgraph of G that is induced by the vertices on the path
from v to the root (of the tree in F to which v belongs). Now construct a graph
Ph from P by adding to the label of each vertex of P its height in F . Then
l(v) is the isomorphism class of Ph. Since G has tree-depth at most k, Ph ∈ Lk.
Thus, l is well-defined. Let Treesk be the function mapping a labelled graph G
of tree-depth at most k to the set of all labelled rooted trees over Lk that can
be constructed from G as described above. We denote by rng(Treesk) the set
of labelled trees

⋃
{Treesk(G) | G labelled graph over L with td(G) ≤ k }.

Lemma 2 Let k ∈ N and T1, T2 be trees in rng(Treesk). If T1 is a subtree of
T2 then G1 ↪→ G2 for all G1, G2 with T1 ∈ Treesk(G1) and T2 ∈ Treesk(G2).

Let T be a rooted tree and x, y ∈ V (T ) two vertices. The infimum of x and
y, denoted x inf y, is the vertex z ∈ V (T ) with the greatest height such that
z � x and z � y. Given rooted trees T1 and T2, a function ϕ is an inf-preserving
embedding from T1 into T2 iff (1) ϕ : V (T1) → V (T2) is injective, and (2) for
all x, y ∈ V (T1), ϕ(x inf y) = ϕ(x) inf ϕ(y). An embedding between two rooted
labelled trees over the same set of labels is label-preserving iff it maps vertices
to vertices with the same label.

Clearly, if a tree is a subtree of another tree then there exists an inf and label
preserving embedding between these trees. For trees that result from the tree
encoding of configurations the converse holds, too. Vertices of different height
in such trees have always different labels. Thus, an inf and label-preserving
embedding between such trees also preserves antecedence of vertices.

Lemma 3 Let k ∈ N and T1, T2 be trees in rng(Treesk). Then the following
two properties are equivalent:

1. there exists an inf and label-preserving embedding from T1 to T2;
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2. T1 is a subtree of T2.

Laver [75] proved a variation of Kruskal’s tree theorem for trees labelled by a
bqo set, namely that countable rooted trees labelled by a bqo set are a bqo under
inf-preserving embedding. Similar to Friedman’s special case of Kruskal’s tree
theorem, we get the special case of Laver’s theorem that rooted trees labelled
by a finite set of labels are better-quasi-ordered by inf and label-preserving
embedding. Thus, together with Lemma 2 we get the following proposition.

Proposition 4 For any k ∈ N, (rng(Treesk), ↪→) is a bqo set.

2.3.3 Limit Configurations as Ideal Completions

Finkel and Goubault-Larrecq [47] characterize the minimal candidates for the
WADLs of a wqo set X in terms of its ideal completion. This means that the set
of all downward-closed directed subsets of X forms a WADL for X. We use this
observation to prove that limit configurations form WADLs for depth-bounded
configurations.

Proposition 5 The directed downward-closed sets of depth-bounded configura-
tions are exactly the denotations of limit configurations.

By [47, Proposition 3.3] the above proposition implies Theorem 1. In our proof
of Proposition 5 we characterize the tree encodings of downward-closed sets of
configurations in terms of the languages of hedge automata [29, Chapter 8].

Hedge automata. A (nondeterministic) finite hedge automaton A over a
finite alphabet Σ is a tuple (Q,Σ, Qf ,∆) where Q is a finite set of states, Qf ⊆ Q
is a set of final states, and ∆ is a finite set of transition rules of the following
form:

a(R)→ q

where a ∈ Σ, q ∈ Q, and R ⊆ Q∗ is a regular language over Q. These languages
R occuring in the transition rules are called horizontal languages.

A run of A on a rooted labelled tree T with vertex label function l : V (T )→
Σ is a vertex label function r : V (T ) → Q such that for each vertex v ∈
V (T ) with a = l(v) and q = r(v) there is a transition rule a(R) → q with
r(v1) . . . r(vn) ∈ R where v1, . . . , vn are the immediate successors of v in T . In
particular, to apply a rule to a leaf, the empty word ε has to be in the horizontal
language of the rule R.

A rooted labelled tree T is accepted by A if there is a run r of A on T such
that r labels the root of T by a final state. The language L(A) of A is the set
of all rooted labelled trees over Σ that are accepted by A.

Finite partitions of well-quasi-ordered sets. In order to characterize the
horizontal languages of the constructed hedge automaton we will define equiv-
alence classes on the vertices of the individual levels of the tree encodings. For
this purpose, the following definition will be useful. Let (X,≤) be a well-quasi-
ordered set. We call a partition P ⊆ 2X of X an infinite chain partition if and
only if (1) P is finite and (2) for all Y ∈ P, either Y is a singleton or Y contains
an infinite chain C such that Y ≤ C.
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Proposition 6 If (X,≤) is a countable well-quasi-ordered set then there exists
an infinite chain partition of X.

Proof. We can construct an infinite chain partition P of X recursively using
the following procedure: according to [38, Theorem 5], X can be partitioned
into finitely many irreducible subsets Y1, . . . , Yn. By [38, Proposition 3], for
each 1 ≤ i ≤ n, Yi contains a chain Ci with Yi ≤ Ci. For each 1 ≤ i ≤ n,
check if Yi contains an infinite chain with this property. If it does then add
Yi to P. Otherwise pick one finite chain Ci with Yi ≤ Ci. Since Ci is finite
it contains a greatest element yi. Then let Zi = { y ∈ Yi | yi ≤ y } be the set
of elements in Yi that are equivalent to yi wrt. the quasi-ordering ≤. Since
Yi contains no infinite chains that are large in Yi, the set Zi is finite. Then
add all singletons {z} with z ∈ Zi to P and recursively apply the above
procedure on the well-quasi-ordered set (Yi − Zi,≤). Clearly, if this procedure
terminates then the resulting set P is an infinite chain partition of X. Thus,
assume that the procedure does not terminate. Then the algorithm constructs
a strictly decreasing infinite sequence Y1 ⊇ Y2 ⊇ . . . of subsets of Y with
Yi − Yi+1 > Yi+1 − Yi+2 for all i ∈ N. Define Xi = Yi − Yi+1 then each Xi

is nonempty, i.e., we can choose xi ∈ Xi for each i ∈ N such that we get an
infinite descending chain x1 > x2 > . . . of elements in X. This contradicts the
fact that ≤ is well-founded. �

In order to prove Proposition 5, we first prove that every directed downward-
closed set of depth-bounded configurations is the denotation of a limit configu-
ration.

Lemma 4 Let D be a downward-closed set of configurations then there exists a
limit configuration E such that D = γ(E).

For proving the lemma, let D = (Pi)i∈N be a downward-closed directed family
of configurations and let k be the maximal tree-depth of the graphs in ct(D).
Choose some Q0 ∈ D whose communication topology has tree-depth k. Using
Q0 construct an ascending chain D′ = (Qi)i∈N as follows: for each i ∈ N choose
Qi ∈ D such that Pi ≤ Qi and Qi−1 ≤ Qi. Such Qi exists for each i ∈ N since
D is directed and, by induction, Qi−1 ∈ D. Then by construction (1) D = ↓D′
and (2) all elements in D′ have tree-depth k. Let (Gi)i∈N be the family of
labelled graphs Gi = ct(Qi). Now for each i ∈ N choose a tree Ti ∈ Treesk(Gi)
such that the family T = (Ti)i∈N is an ascending chain with respect to the
subtree relation. Such a family exists because the Gi are ordered by subgraph
isomorphism and all Gi have the same tree-depth. Without loss of generality
we assume that the vertex sets of all trees Ti are pairwise disjoint.

Let V =
⋃
i∈N V (Ti), E =

⋃
i∈NE(Ti), and let l be the union of all the

vertex labelling functions of the labelled trees Ti. The height of the vertices in
the trees Ti range from 1 to k+1. For a vertex v ∈ V of height h > 1 we denote
by parent(v) ∈ V the parent of v in the tree Ti to which v belongs. Similarly, for
a vertex v ∈ V we denote by Children(v) the set of all vertices that are direct
successors of v in the tree to which v belongs. We extend the functions parent
to sets of vertices, as expected. Furthermore, let T (v) be the subtree rooted in
v of the tree Ti with v ∈ V (Ti). For all 1 ≤ h ≤ k + 1, let Vh be the set of
all vertices in V that have height h. For all h we extend the relation ↪→ from
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labelled rooted trees to vertices in Vh as expected: for all v, w ∈ Vh, v ↪→ w iff
T (v) ↪→ T (w). From Proposition 4 and Property 3 of Proposition 1 follows that
for all h, (Vh, ↪→) is a bqo.

We will now construct a finite hedge automaton A from the family of trees
T whose language is both small and large in T . For this purpose we define an
equivalence relation on each Vh that partitions Vh into finitely many equivalence
classes. These equivalence classes serve as the states of the automaton.

For each i ∈ N fix some injective label-preserving homomorphism φi :
V (Ti) → V (Ti+1) and denote by φ[i,j] the composition φj−1 ◦ · · · ◦ φi if j > i
and the identify function id if j = i. Then define an equivalence relation ∼ on
V as follows: for all vi ∈ V (Ti) and vj ∈ V (Tj)

vi ∼ vj iff
i ≤ j and φ[i,j](vi) = vj or
i ≥ j and φ[j,i](vj) = vi

Now, recursively define an equivalence relation 'h on Vh for each 1 ≤ h ≤
k + 1 as follows: for h = 1 we simply have v '1 w for all v, w ∈ V1. In
order to define 'h for h > 1 we need some intermediate definitions. Given an
equivalence class U in the quotient of Vh−1 wrt. 'h−1, let Children(U) be the set
of equivalence classes ṽ in the quotient Vh/∼ such that some v ∈ ṽ has a parent in
U . Since (Vh, ↪→) is a bqo, and Children(U) ⊆ 2Vh , it follows from Proposition 1
that (Children(U), ↪→1) is also a bqo and thus a wqo. Furthermore, Children(U)
is countable. Thus, by Proposition 6 there exists an infinite chain partition of
Children(U). For each U , choose one such infinite chain partition P(U) of
Children(U). Then for v, w ∈ Vh we define: v 'h w iff there exists U ∈
Vh−1/'h−1

such that (1) parent(v), parent(w) ∈ U and (2) there is P ∈ P(U)
such that v, w ∈

⋃
P .

Lemma 5 Each 'h is indeed an equivalence relation on Vh and that each 'h
partitions Vh into finitely many equivalence classes.

Proof. By induction on h:

h = 1: directly follows from the definition of '1.

h > 1: By induction, we know that Vh−1/'h−1
has finitely many equivalence

classes. Additionally, P(U) partition the children into finitely many sets.
These two facts imply that 'h partitions Vh into finitely many equivalence
classes. Furthermore, proving that 'h is an equivalence relation requires
proving reflexivity, symmetry, and transitivity. The first two follows di-
rectly from the definition. Transitivity additionally relies in the fact that
P(U) is a partition.

�

Furthermore, using the definition of infinite chain partitions one can easily
prove the following properties.

Lemma 6 Let U ∈ Vh/'h
then

1. all v ∈ U have the same label,

2. U is directed with respect to ↪→,
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A = (Q,Σ, Qf ,∆)

Q = { } Qf = { }Σ = {a, b, c}
∆ = { c(ε) → , c(ε) → , b( ) → , b( +) → , a( ) → }

Figure 2.2: A chain of labelled trees with the equivalence classes under the
relations 'h and the constructed hedge automaton

3. if h = 1 then U contains exactly the root vertices of all the trees Ti,

4. if h > 1 then parent(U) ⊆ U ′ for some U ′ ∈ Vh−1/'h−1
and

(a) either all vertices in U ′ have at most one child in U or

(b) every v ∈ U is contained in a proper infinite chain C ⊆ U and
for every finite subset V ⊆ U there exists v′ ∈ U ′ such that V ↪→1

Children(v′) ∩ U .

Now let ' be the union of all the relations 'h. Then ' is an equivalence
relation on V that partitions V into finitely many equivalence classes. For an
equivalence class U ∈ V/', let C(U) be the set of all equivalence classes that
contain children of vertices in U . Furthermore, let l(U) be the unique label of
all vertices in U , and let m(U) denote 1 if every parent of a vertex v ∈ U has at
most one child in U and, otherwise, let m(U) denote the symbol +. Now define
the hedge automaton A = (Q,Σ, Qf ,∆) where:

• Q = V/',

• Σ = Lk,

• Qf = V1/',

• ∆ consists of transition rules of the following form for each U ∈ V/'

– l(U)(U
m(U1)
1 · · ·Um(Un)

n )→ U if C(U) = {U1, . . . , Un}
– l(U)(ε)→ U if C(U) = ∅.

Figure 2.2 depicts a chain of trees and the constructed automaton A. The
equivalence classes in the quotient V/ ' are highlighted in the trees.

Using Lemma 6 we can now prove that the language accepted by A is both
small and large in T .

Lemma 7 L(A) is small in T , i.e., ∀T ∈ L(A)∃i ∈ N : T ↪→ Ti.
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Proof. For proving the lemma, let TU be a tree labelled by Lk and r a run of
A on TU . We show by induction on the height of TU that if r(w) = U for the
root w of TU then there exists v ∈ U such that TU ↪→ T (v).

If h = 1 then TU consists of a single root vertex w that is a leaf. Then the
transition rule in ∆ used to label w in r is of the form l(U)(ε) → U . Thus,
by construction of A all trees T (v) for vertices v ∈ U consist of the single leaf
vertex v labeled by l(U), i.e., TU ↪→ T (v) for all v ∈ U .

If h > 1 then the transition rule in ∆ used to label w must have the form

l(U)(Um1
1 · · ·Umn

n )→ U

with C(U) = {U1, . . . , Un} and mi = m(Ui) for all 1 ≤ i ≤ n. Let

T1,1, . . . , T1,r1 , . . . , Tn,1, . . . , Tn,rn

be the subtrees of TU rooted at the children of w such that r labels the root of
each tree Ti,j by Ui. These trees have height h− 1 and r is a run of A on each
of these trees. Thus, by induction hypothesis there exist vertices

v1,1, . . . , v1,r1 ∈ U1 . . . vn,1, . . . , vn,rn ∈ Un

with Ti,j ↪→ T (vi,j) for all 1 ≤ i ≤ n, 1 ≤ j ≤ ri. If two vertices vi,j and
vi′,j′ coincide then we must have i = i′. Thus, ri > 1 and m(Ui) = +, i.e., by
construction of A, there are vertices in U that have more than one child in Ui.
Then Ui satisfies property 4.(b) of Lemma 6, i.e., Ui contains a proper infinite
chain C with vi,j ∈ C. Hence, we can choose two vertices v′i,j , v

′
i′,j′ ∈ C that

are (1) distinct, (2) disjoint from all other vi,j , and (3) satisfy Ti,j ↪→ T (v′i,j)
and Ti,j ↪→ T (v′i′,j′). Therefore, without loss of generality assume that all the
vi,j are distinct. Now for any 1 ≤ i ≤ n we can find vi ∈ U such that

{vi,1, . . . , vi,ri} ↪→1 Children(vi) ∩ Ui

Namely, if ri = 1 then vi = parent(vi,1) and if ri > 1 then such vi exists
by property 4.(b). Now, using the fact that U is directed we can inductively
construct an upper bound v ∈ U of all the vi with respect to the wqo ↪→. Then
we have by construction:

{v1,1, . . . , v1,r1 , . . . , vn,1, . . . , vn,rn} ↪→1 Children(v)

We conclude that Children(w) ↪→1 Children(v) and l(v) = l(U), i.e.,
TU ↪→ T (v), which concludes the induction proof. �

Using a similar inductive proof we can show that L(A) is large in T .

Lemma 8 L(A) is large in T , i.e., ∀i ∈ N ∃T ∈ L(A) : Ti ↪→ T .

Note that by construction of A the tree encoding operation can be reversed
on the trees in L(A). Let DA be the corresponding set of configurations. From
Lemmas 7,8,2, and 1 follows that D = ↓D′ = ↓DA. From A we can now easily
construct a limit configuration E whose denotation is the downward closure of
DA. It follows that D = ↓DA = γ(E) which proves Lemma 4.

Lemma 9 For any limit configuration E, γ(E) is a downward-closed directed
set.
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Clearly γ(E) is downward-closed. For proving that γ(E) is directed, we can
again construct a hedge automaton A from E, such that the tree encoding
operation can be reversed on all trees accepted by A and the downward-closure
of the resulting configurations DA coincides with γ(E). Using a simple pumping
argument for the language L(A) we can show that for every two trees T1, T2 ∈
L(A) there exists a tree T ∈ L(A) such that T1 ↪→ T and T2 ↪→ T . It follows
that DA is directed and thus γ(E).

2.4 Forward Analysis of Depth-Bounded Pro-
cesses

The expand, enlarge, and check (EEC) algorithm of Geeraerts et al. [52] is a
forward algorithm that decides the covering problem for effective WSTSs with
appropriate adequate domain of limits.

A WSTS (X,x0,→,≤) and an adequate domain of limits (Y,v, γ) for the
wqo (X,≤) are effective if the following conditions are satisfied: (E1) X and
Y are recursively enumerable; (E2) for any x1, x2 ∈ X, one can decide whether
x1 → x2; (E3) for any z ∈ X ∪ Y and for any finite subset Z ⊆ X ∪ Y ,
one can decide whether Post(γ(z)) ⊆ γ(Z); and (E4) for any finite subsets
Z1, Z2 ⊆ X ∪ Y , one can decide whether γ(Z1) ⊆ γ(Z2).

Theorem 2 (Geeraerts et al. [52]) There exists an algorithm to decide the
covering problem for effective WSTSs with an adequate domain of limits.

We argue that the WSTS induced by a depth-bounded process together with
its WADL of limit configurations are effective. The conditions (E1) and (E2)
are clearly satisfied. Also given a limit configuration z we can compute a finite
set of limit configurations denoting Post(γ(z)). Note further that Proposition 5
implies that for any finite subsets Z1, Z2 ⊆ L(PI , k), γ(Z1) ⊆ γ(Z2) holds if
and only if for all z1 ∈ Z1 there exists z2 ∈ Z2 such that γ(z1) ⊆ γ(z2). The
inclusion problem γ(z1) ⊆ γ(z2) can be reduced to the language inclusion prob-
lem for deterministic hedge automata, which is decidable. For this purpose, one
computes deterministic hedge automata from the finitely many tree encodings
of the configurations of z1 and z2 and then checks whether the language of some
automaton of z1 is included in the language of some automaton of z2. Thus
conditions (E3) and (E4) are also satisfied.

Finally, let us explain why the EEC algorithm terminates on depth-bounded
systems even if the bound of the system is not known a priori. The idea of
the algorithm is to simultaneously enumerate two infinite increasing chains.
The first chain X0 ⊆ X1 . . . is a sequence of finite subsets of X that contains
all reachable configurations of the analyzed system. The second chain Y0 ⊆
Y1 ⊆ . . . is a sequence of finite subsets of Y that contains all limits Y . In
each iteration i the algorithm computes an under and an over-approximation
of the analyzed system for the current pair (Xi, Yi) of elements in the chain.
These approximations are such that the under-approximation is guaranteed to
detect that t can be covered if Xi contains a path to a covering state. The
over-approximation is guaranteed to detect that t cannot be covered if Yi can
express ↓ Post∗(↓ s0) and this set does not cover t. The conditions on the chains
ensure that one of the two conditions eventually holds for some i ∈ N.
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For deciding the covering problem of depth-bounded systems we can now
simply enumerate the sets C(PI ) =

⋃
k∈N C(PI , k) and L(PI ) =

⋃
k∈N L(PI , k).

Then in each iteration of the EEC algorithm the pair (Xi, Yi) is contained
in some limit domain C(PI , k),L(PI , k)) and the conditions on the chains for
termination of the EEC algorithm are still satisfied.

Theorem 3 The covering problem for depth-bounded processes is decidable.

Complexity. Not only depth-bounded systems inherit the nonprimitive recur-
sive complexity lower-bound of the nets it subsumes [107]. Encoding the Ack-
ermann function, for instance, can be done easily using a Church-like encoding
for the integers. Since the computation of the Ackermann function terminates
the system is depth-bounded.

2.5 Further related work

Depth-bounded processes are semantically defined in terms of reachable con-
figurations. The idea of using nesting of π-calculus names as a measure of the
expressiveness a system goes back to [106] where it takes the form of a type sys-
tem. This question of expressiveness and name dependencies was investigated
further in [22, 55]. Ostrovský [94] uses depth-boundedness and well-structured
transition systems in the context of decidability of session types. While checking
depth-boundedness is in general undecidable, many fragments of the π-calculus
that are defined syntactically [9, 35] or in terms of type systems [94, 106, 22]
are subsumed by depth-bounded processes. Our result carries over to these
fragments. Further related work can be found in the context of graph rewriting
systems. Bauer and Wilhelm [17] developed an overapproximating shape anal-
ysis for graph rewriting systems whose reachable configurations have a star-like
shape. Such systems are bounded in the length of the acyclic paths. Our result
naturally generalizes to such systems and promises complete algorithms for their
verification.

The control reachability problem for the π-calculus has been studied in
[90, 9, 113, 36]. The approaches taken in [90, 113] consider only finitary sys-
tems that impose a bound on the number of threads that can be dynamically
created. Delzanno [36] considers an abstraction-based approach that applies to
the full asynchronous π-calculus. This approach is sound but in general incom-
plete. Amadio and Meyssonnier [9] considers input-bounded systems, a syntacti-
cally defined fragment of the asynchronous π-calculus that allows some form of
name creation and name mobility. Input-bounded systems and depth-bounded
systems are incomparable. Unlike depth-bounded systems, input-bounded sys-
tems cannot truly model the dynamic creation of an unbounded set of threads
by a given thread such that all of these threads remain active and communi-
cate. Because of such restrictions, input-bounded systems are less interesting
from a practical point of view. Conversely, input-bounded systems are not
depth-bounded because they enable the creation of unbounded chains of inac-
tive threads. We suspect that there is a relaxation of the depth-boundedness
condition that subsumes both fragments and for which control-reachability is
still decidable.
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Chapter 3

Bridging the gap between
theory and practice: ideal
abstraction

In the previous chapter we developed a adequate domain of limits for depth-
bounded systems. Even though, we can use these limits to solve the covering
problem, it does not yet give a efficient and practical analysis. Furthermore,
we are interested not only in the covering problem, but also in the covering set
which can be used for further analysis as we will see in Chapter 5. For this pats
we are also broadening our scope and consider additional kinds of WSTS such
as Petri nets and lossy-channel systems. Among the most popular algorithms
to compute the covering set are acceleration-based forward algorithms like the
Karp&Miller tree. Termination of these algorithms can only be guaranteed for
flattable WSTS. Yet, many WSTS of practical interest are not flattable and the
question whether any given WSTS is flattable is itself undecidable. We therefore
propose an analysis that computes the covering set and captures the essence of
acceleration-based algorithms, but sacrifices precision for guaranteed termina-
tion. Our analysis is an abstract interpretation whose abstract domain builds on
the ideal completion of the well-quasi-ordered state space, and a widening oper-
ator that mimics acceleration and controls the loss of precision of the analysis.
We present instances of our framework for various classes of WSTS.

This chapter is joint work with Thomas A. Henzinger and Thomas Wies.
It was published in VMCAI 2012 as “Ideal Abstractions for Well-Structured
Transition Systems” [114].

3.1 Motivation

One of the great successes in applying model checking techniques to the anal-
ysis of infinite state systems has been achieved by studying the class of well-
structured transition systems (WSTS) [3, 49, 73, 48, 47, 71, 52, 51]. Interesting
classes of WSTS include Petri nets [95] and their monotonic extensions [41],
lossy channel systems [5], and dynamic process networks such as depth-bounded
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processes [80].
Many interesting verification problems are decidable for WSTS. In particu-

lar, the verification of a large class of safety properties can be reduced to the
coverability problem, which is decidable for WSTS that satisfy only a few addi-
tional mild assumptions [3]. In this paper, we are not just interested in solving
the coverability problem, but in the more general problem of computing the cov-
ering set of a WSTS T . The covering set Cover(T ) is defined as the downward-
closure of the reachable states of the system Cover(T ) = ↓Post∗(↓{s0}). With
the help of the covering set one can decide the coverability problem, but also
answer other questions of interest such as boundedness (which asks whether
Cover(T ) is finite) and U -boundedness (which asks whether Cover(T ) ∩ U is
finite for some upward-closed set U). While coverability is decidable for most
WSTS, boundedness is not [41], i.e., the covering set is not always computable.
Therefore, our goal is to compute precise over-approximations of the covering
set, instead of computing this set exactly. In this paper, we present a new
analysis based on abstract interpretation [32, 31] that accomplishes this goal.

One might question the rational of using an approximate analysis for solv-
ing decidable problems such as coverability. However, in practice one often uses
coverability to give approximate answers to verification problems that are unde-
cidable even for WSTS (such as general reachability). Thus, completeness is not
always a primary concern. Also, one should bear in mind that even though cov-
erability is decidable, its complexity is non-primitive recursive for many classes
of WSTS [107], i.e., from a practical point of view the problem might as well be
undecidable. Nevertheless, the techniques that have been developed for solving
the coverability problem provide important algorithmic insights for the design
of good approximate analyses.

Among the best understood algorithms for computing the exact covering
set of a WSTS are acceleration-based algorithms such as the Karp&Miller tree
construction for Petri nets [73] or the more general clover algorithm [48]. These
algorithms exploit the fact that every downward-closed subset of a well-quasi-
ordering can be effectively represented as a finite union of order ideals [58, 47].
The covering set is then computed by identifying sequences of transitions in the
system that correspond to loops leading from smaller to larger states in the or-
dering, and then computing the exact set of ideals covering the states reachable
by arbitrary many iterations of these loops. This process is referred to as ω-
or lub-acceleration. Since acceleration is exact, these algorithm compute the
exact covering set of a WSTS, whenever they terminate. Since the covering set
is not always computable, termination is only guaranteed for so-called flattable
systems [48]. In a flattable WSTS the covering set can be obtained by a finite
sequence of lub-accelerations of finite sequences of transitions. In particular,
this means that every nested loop of transitions can be decomposed into a finite
sequence of simple loops. Many WSTS of practical interest do not satisfy this
property. We provide an example of such a system in the next section.

We are the first to propose an abstract interpretation framework that com-
putes precise approximation of covering sets for WSTS, captures the key in-
sights of acceleration-based algorithms, yet is guaranteed to terminate even on
non-flattable WSTS. The abstract domain of our analysis is based on the ideal
completion of the well-quasi-ordering of the analyzed WSTS and an accompany-
ing widening operator. The widening operator mimics the effect of acceleration,
but loses enough precision to guarantee termination. Instead of accelerating
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Equations:
client(C, S) = C().client(C, S)⊕ (S(C).0 | client(C, S))

server(S) = S(C).(C().0 | server(S))
env(S) = env(S) | (ν C)client(C, S)

Initial state: (ν S)(server(S) | env(S))

Figure 3.1: A π-calculus process implementing a client-server protocol.

loops that lead from sets of smaller to sets of larger states, our widening opera-
tor only accelerates the difference between these sets of states, independently of
the actual sequence of transitions that produced them. We present instances of
our framework for the WSTS classes of Petri nets, lossy channel systems, and
depth-bounded process networks.

3.2 Overview of the Analysis

We start with an example of a non-flattable system and illustrate how our
analysis computes its covering set. Our example is given by the π-calculus
process shown in Figure 3.1. The process models a concurrent system that
implements a client-server protocol using asynchronous message passing. The
process consists of one single server thread, an environment thread, and an
unbounded number of client threads. Each type of threads is defined by a
recursive π-calculus equation. In each loop iteration of a client, the client non-
deterministically chooses to either wait for a response from the server on its own
dedicated channel C, or to send a new request to the server. Requests are sent
asynchronously and modeled as threads that wait for the server to receive the
client’s channel name over the server’s dedicated channel S and then terminate
immediately. In each iteration of the server loop, the server waits for incoming
requests on its own channel S and then asynchronously sends a response back
to the client using the client’s channel name C received in the request. The
environment thread models the fact that new clients can enter the system at
anytime. In each iteration of the environment thread, it spawns a new client
thread with its own dedicated fresh channel name. The initial state of the
system consists only of the server and the environment thread.

The states of a π-calculus process can be represented as a communication
graph with nodes corresponding to threads (labeled by their id) and edges cor-
responding to channels (labeled by channel names). The left hand side of Fig-
ure 3.2 shows the communication graph representing the process:

server(S) | client(C1, S) | S(C1).0 | client(C2, S) | env(S)

The graph of Figure 3.2 are more compact than the one obtained using the ct
function defined in Section 2.3.2. Here the name nodes are implicit because
we look at systems respecting the unique receiver condition, i.e. only a single
process receive from a name and this name does not change over time. This
allows us to draw more compact graphs but does not change the theoretical
results.

The transition relation on processes is monotone with respect to the ordering
on processes that is induced by subgraph isomorphism between their commu-
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Figure 3.2: Communication graph of the system in Figure 3.1 and the symbolic
representation of the covering set of this system

nication graphs, i.e., a process represented by a communication graph G can
take all transitions of processes represented by the subgraphs of G. We call a
set of graphs depth-bounded, if there exists a bound on the length of all simple
paths in all graphs in the set. A depth-bounded process [80] is a process whose
set of reachable communication graphs is depth-bounded. The subgraph iso-
morphism ordering is a well-quasi-ordering on sets of depth-bounded graphs,
i.e., depth-bounded processes are WSTS. The process defined in Figure 3.1 is
depth-bounded because the longest simple path in any of its reachable commu-
nication graphs has length at most 2. We now explain our analysis through this
example.

Our analysis computes an over-approximation of the covering set of the ana-
lyzed WSTS, i.e., the downward-closure (with respect to the well-quasi-ordering)
of its reachable set of states. The elements of the abstract domain of the analysis
are the downward-closed sets. In our example, these are sets of communication
graphs that are downward-closed with respect to the subgraph ordering. A finite
downward-closed set of graphs can be represented by the maximal graphs in the
set. The downward-closure of a single graph is an ideal of the subgraph ordering.
Thus, any finite downward-closed set is a finite union of ideals. For well-quasi-
orderings this is true for arbitrary downward-closed sets, including infinite ones.
We symbolically represent the infinite ideals of the subgraph ordering by graphs
where some subgraphs are marked with the symbol ‘*’. These markings of sub-
graphs can be nested. Such a symbolic graph represents the downward-closure
of all graphs that result from (recursively) unfolding the marked subgraphs arbi-
trarily often. We call this type of symbolic graphs nested graphs. The right hand
side of Figure 3.2 shows such a nested graph. It represents a downward-closed
set of communication graphs of our example system that is also the covering set
of the system. The covering set consists of all graphs that contain one server
thread, one environment thread, and arbitrarily many clients with arbitrarily
many unprocessed request and response messages each.

Our analysis works as follows: it starts with a set of nested communication
graphs that represents the downward-closure of the initial states of the system.
Then it iterates a fixed point functional that is composed of the following two
steps: (1) compute the set of nested communication graphs that represent the
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Figure 3.3: Sequence of symbolic communication graphs produced by the anal-
ysis of the system in Figure 3.1

downward-closure of the post states of the states represented by the current set
of nested graphs, and (2) widen the resulting set of nested graphs with respect
to the sequence of iterates that have been computed in the previous steps. The
widening step compares the nested graphs in the new iterate pairwise to the
nested graphs obtained in the previous iterates. If a nested graph in the new
iterate is larger than some nested graph in a previous iterate then the larger
graph must contain a subgraph that is not contained in the smaller one. This
subgraph in the larger graph is then marked with a ‘*’. The intuition behind
the widening is that, because of monotonicity of the transition relation, the
sequence of transitions that lead from the smaller to the larger graph can be
repeated arbitrarily often, which results in graphs with arbitrarily many copies
of the new subgraph. Figure 3.3 shows a sequence of nested graphs obtained
during the analysis of the client-server example. The final nested graph in the
sequence represents the covering set of the system. This nested graph is also
the fixed point obtained by our analysis, i.e., in this example the analysis does
not lose precision.

Note that the covering set of our example system cannot be computed by
a finite number of accelerations of finite sequences of transitions, i.e., the sys-
tem is not flattable. This is reflected by the nesting of marked subgraphs in
the nested graph that represents the covering set. To obtain this covering set
via acceleration, one would need to compute the set of states reachable by a
transfinite sequence of transitions resulting from ω-acceleration of a sequence
of transition that is already infinite. The infinite sequence of transition that
is to be accelerated corresponds to the creation of a client by the environment
thread, followed by infinitely many exchanges of request and response messages
between this client and the server. Since acceleration-based algorithms such as
the clover algorithm [48] cannot accelerate infinite sequences of transitions, they
do not terminate on our example system.

Ordinal numbers, Height of a poset and Cofinal sets. Throughout this
part we will use ordinal numbers, and we assume the reader to be familiar with
the basic aspect of their use. [50] can be consulted as reference. Furthermore,
we use the less known natural sum and natural product of ordinals to bound
the order type of the combination of ordered sets. The reader can consult [24]
for the definitions of those operations.

Since we are working with poset rather than totally ordered set, we need
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to introduce a few more terms. The height of a poset P is the ordinal number
which has the same order type as the longest chain contained in P . We refer
to the height of an element x, denoted h(x), as the order type of the longest
strictly ascending chain that finishes with x. The width of a poset is the size of
its longest antichain. In the case of wqo, the width is finite.

In a set A equipped with a relation ≤, a subset B of A is cofinal iff for
every a ∈ A there exists a b ∈ B such that a ≤ b. The cofinality (cf (A)) of a
poset A is the cardinality of the smallest cofinal subset of A. We also refer the
reader to [38, 39] which provide good insights about the role of cofinal sets in
well-quasi-ordered spaces.

3.3 Acceleration and Non-flattable Systems

We now show that the example of Figure 3.2 is not flattable. We investigate the
order type of the chains that goes from the initial state (bottom) to the limit
configurations of the cover (top). Furthermore, we are only interested in chain
such that it is possible to get from one elements of the chain to the next one with
a finite number of transition of the system. This restriction captures the kind
of chains that an acceleration based algorithm explores (flat traces). Without
this restriction it is possible to find a chain of order type ω by the cofinality of
the space. First, we show that the longest chain in this example has order-type
ω2 · 2. Then, we show that any chain with the restriction mentioned above has
at least order-type ω2.

To convince ourself that the length of the longest chain is ω2 ·2 we can simply
show a chain of such length. Consider the chain of length ω that adds one client
and then adds many requests. By repeating this chain ω times we can make
a chain of length ω2. To that chain we can append another chain of length ω
that adds server’s replies to one client. And, again, repeat this process for all
the clients to obtain a chain of length ω2 · 2. We still need to prove that there is
no longer chain. Let observe that before adding any requests we must add the
corresponding client first. This prevents the existence, for instance of a chain of
length ω+1 where the requests are added before the client. The same reasoning
can be done for the server’s replies. The requests and the replies together gives
a chain of at most ω · 2. Because of the ordering used (embedding) we know
that the ordering of any sequence of state that include element of such a chain
must the respect the ordering of that chain. In the state space pf the system
there can be ω such chains of length ω · 2. By [24] we can bound any chain in
the state space by ω2 · 2.

To argue about the length of the shortest chain from bottom to top, we need
to look at what are the successors of a configuration in the ordering. When we
look at the transitions of the system, It is possible to add a client (transition of
the env process), to add a request (transition of a client process), to consume a
request and send a reply (transition of the server), or consume a reply (transition
of the client). In order of getting a ω2 lower bound on the length of a chain
from bottom to top, we can ignore the replies from the server and the reception
of requests and replies to focus only on the client and the requests. Hence we
consider only two kind of transitions: adding a client and a client sending a
request. We can first add all the clients which take ω operations. Then we need
to add the messages to each clients. There is two ways of doing this. Either
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adding a finite number of message to each clients and repeating until the system
is saturated, or first saturating one clients with requests and then proceeding
to the next client. In both cases ω · ω(= ω2) operations are required.

In Section 3.4 we show results about the height of state-spaces for Petri Nets,
Lossy Channels Systems, and Depth-Bounded Processes. These observations
help better understanding why some systems are necessarily non-flattable.

In Section 3.5 we briefly comment on another cause of non-flattability, the
absence of iterated sequence.

3.4 Height of the State-spaces for PN, LCS, and
DBP

To better understand the complexity of widening and the difference between
acceleration and widening it is worth looking in more details at the shape of the
state spaces of Petri nets, lossy-channel systems, and depth-bounded systems.
One of the interesting questions is the height of the state space, i.e. what is
the longest chain in the state space. Acceleration of simple loops is generating
chains of length ω where there is a finite number of elements in the ordering
between any two consecutive elements of the chains. Therefore, to guarantee
convergence when the state space admits chains with length at least ω2 we need
to use a widening operator. For a PN with n places the height is ω · n, see
Proposition 7. In the case of a DBP with depth n and e the number of equation
defining the system, the height of the space is ωn+1 · e, see Proposition 9. For a
LCS with n channels and m the number of different messages, we do not have
a tight bound. Proposition 8 presents the upper and lower bound we found.

State space of Petri nets.

Proposition 7 A PN with n places has a state space of the height ω · n.

Proof. The state-space of a petri-net with n places is Nn. We observe that
the longest chain in Nn is a well-order in the disjoint union of N ] N ] . . . (n
times). This follows that fact that when the place p has x tokens there cannot
be any element further in the chain with p having less than x tokens. By [24,
Theorem 1], we know that order type of this chain is less than or equal to ω ·n.
We now prove that this bound is tight by showing a chain of that length. The
lowest element in the ordering is when all the places are empty. The highest
where all the places contains ∞ many tokens. A strictly ascending ω-chain
takes at least one place that contains finitely many element to the limit (∞).
Hence, there can by at most n such chain. Concatenating these chains gives
the height: ω · n. �

State space of lossy-channel systems.

Proposition 8 A LCS with n channels and m different messages has a state
space with height between ωm · n+ 1 and Σmi=0 ω

m−i ∗ n.
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Proof.

Lower bound: To show the lower bound, we start by showing a chain over a
single channel of length ωm+ 1 going from ε (bottom) to (Σa∈Σ a)∗ (top).
The chains starts at ε, then add a1 until it reaches a∗1, then adds a2 and
goes back to adding a1. When (a∗1a2)∗ is reached, the scheme is repeated
with a3, a4, . . .. To get the length of this chain let consider the case of
|a∗1| = Σω0 1 = ω. Similarly, |(a∗1a2)∗| = Σω0 (ω + 1) = ω2 + 1. For all the
messages we get ωm + 1. Then repeating this process for each channel we
get the lower bound of ωm · n+ 1.

Upper bound: Using natural operations we can easily derive an upper bound
of Σmi=0 ω

m−i ∗ n.

�

State space of depth-bounded systems.

Proposition 9 A DBP with depth n and where e is the number of equation
defining the system has a state space height bounded by ωn+1 · e.

Proof. The equations defining the systems are crucial in determining the state
space. So we will show that there exists some equations which state-space can
reach that bound. We can prove this by induction over n. We assumes that the
equations defining the system are in a normal form where the equations starts
by a prefix, see [9]. Hence, there are no equations without name parameter.
Since the definition of DBP does not allows free name, we start our induction
with n = 1.

n = 1: In this case there are top-level names defining scopes that contain pro-
cesses referencing the names corresponding to the scope. The scopes do
not intersect. Within a scope there is at most e different kinds of pro-
cesses. Furthermore, there can be many disjoint scopes. We can start our
chain by creating ω-scopes containing one element (empty scopes are not
allowed). Then we can have an ω-chain to add one element to each scope.
Hence, we get a chain of length ω2 to saturate each scope with a single
element. We can repeat this process for each of the equation label, i.e e
times. This chain gives an height of ω2 · e.

n→ n+ 1: Increasing the nesting means that must be one or more processes
referencing the top-level name. These processes may or may not already
be in another scope. In the worst case there is all the names are at the
bottom of the nesting and references all the n+1 names. No imagine that
we restrict ourself to a single process, i.e. e = 1, and apply our induction
hypothesis. Each scope of depth n gives a chain of length ωn+1. We can
have ω scopes of depth n+1, hence create a chain of length ωn+1ω = ωn+2.
Then we repeat this process e times to saturate the system with all the
possible elements to obtain a chain of ωn+2 · e.

We now should prove that this bound is a real upper bound. In order to do
so we shall use [24, Theorems 1-2] and induction over n.
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Figure 3.4: Reset net wit no iterated sequence.

n = 1: This case is equivalent to an ω-chain of PN with e places. The order
type of that chain can be seen as the natural product of ω and ω ·e. Hence
the bound is ω2 · e.

n→ n+ 1: We can use the same reasoning as the part about reaching the bound
which amounts to taking the natural product between ω and ωn+1 ·e. This
proves that the bound is ωn+2 · e.

�

Remark 2 A tight bound can be directly derived from [24, Theorems 1-2]. How-
ever, we feel that showing explicitly a chain that reaches the bound gives a better
grasp of what the state-space looks like.

3.5 WSTS without iterated sequence

Even when the state-space has an height less than ω2 algorithms based on ac-
celeration may not finish. The reason is that the procedure finishes only if the
cover can be generated using a finite number of acceleration, i.e. the system
has a finite number of behaviors. This fact is captured by the flattability con-
dition [15]. Only flat (without nested loop) or flattable system can be analyzed
by acceleration. For instance, nested loops can give rise to longer and longer
sequences of transitions, leading to divergence of the algorithm. Figure 3.4 pre-
sented in [41] shows a reset net with such a behaviour. To get from (1, i, 0, 0)
to (1, i+ 1, 0, 0) the firing sequence is ti1t2t

i
3t4. Hence, getting to (1, ω, 0, 0) re-

quires the firing of infinitely many different sequences. Even though, flattable
systems are very common [76], it is undecidable to know if a system is flattable
a priori [27].

3.6 Ideal Abstraction

We next describe our abstract interpretation framework for computing over-
approximations of the covering sets of WSTS. For this purpose we fix a WSTS
T = (S, S0,→,≤) throughout the rest of this section.
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3.6.1 Concrete and Abstract Domain

Following the framework of abstract interpretation [32, 31], a static analysis
is defined by lattice-theoretic domains and by fixed point iteration over the
domains. The concrete domain D of our analysis is the powerset domain over
the states S of WSTS T :

D def
= P(S)(⊆, ∅, S,∪,∩)

Since our analysis is to compute an over-approximation of the covering set of
T , which is a downward-closed set, we define the abstract domain D↓ as the set
of all downward-closed subsets of S, again ordered by subset inclusion:

D↓
def
= { ↓X | X ⊆ S } (⊆, ∅, S,∪,∩)

One can easily verify that D↓ is a complete lattice. This choice of the abstract
domain suggests the following abstraction function α↓ : D → D↓ and concretiza-
tion function γ↓ : D↓ → D defined as α↓(X)

def
= ↓X and γ↓(Y )

def
= Y .

Proposition 10 The pair (α↓, γ↓) forms a Galois insertion between domains
D and D↓.

According to [31], the Galois insertion (α↓, γ↓) defines the best abstract post
operator post↓ on the abstract domain D↓:

post↓
def
= α↓ ◦ post ◦ γ↓

We next show that we can effectively represent the elements of D↓ and, for all
practical purposes, effectively compute post↓ on this representation. To obtain
this representation, we exploit the fact that any downward-closed subset of a
wqo-set S(≤) is a finite union of ideals of S(≤).

Denote by Pfin(Idl(S)) the finite sets of ideals of S(≤) and define the quasi-
ordering v on Pfin(Idl(S)) as the point-wise extension of ⊆ from the ideal
completion Idl(S) of S(≤) to Pfin(Idl(S)):

L1 v L2
def⇐⇒ ∀I1 ∈ L1.∃I2 ∈ L2. I1 ⊆ I2

Let DIdl be the quotient of Pfin(Idl(S)) with respect to the equivalence relation
v ∩ v−1. For notational convenience we use the same symbol v for the quasi-
ordering on Pfin(Idl(S)) and the partial ordering that it defines on the quotient
DIdl . We further identify the elements of DIdl with the finite sets of maximal
ideals, i.e., for all L ∈ DIdl and I1, I2 ∈ L, if I1 ⊆ I2 then I1 = I2.

Now, define the function γIdl : DIdl → D↓ as γIdl(L)
def
=
⋃
L.

Proposition 11 The function γIdl is an order-isomorphism.

Proof. Every downward-closed subset of a wqo-set S(≤) is a finite union of
ideals from Idl(S) (this follows, e.g., from [38, Theorem 5] or from [47, Propo-
sition 3.2 and Proposition 3.3]). Thus γIdl is surjective.

Assume γIdl is not injective. Then there exist distinct L1, L2 ∈ DIdl such
that γIdl(L1) = γIdl(L2). Since L1 6= L2, either L1 6v L2 or L2 6v L1. Assume
wlog. that L1 6v L2. Then there exists I1 ∈ L1 such that for all I2 ∈ L2, I1 6⊆ I2.
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Hence there exists x ∈ I1 such that x /∈
⋃
L2. It follows

⋃
L1 6=

⋃
L2, which is

a contradiction. Thus, γIdl is injective.
Monotonicity of γIdl follows immediately from the definitions of γIdl and v.

For proving that the inverse of γIdl is monotone, let X1, X2 ∈ D↓ such that
X1 ⊆ X2. We first prove a small lemma: let L ∈ DIdl and I ∈ Idl(S) such that
I ⊆

⋃
L and I 6= ∅. Let n be the cardinality of L. Since I is nonempty, so must

be L, i.e., n ≥ 1. We prove by induction on n that there exists J ∈ L such that
I ⊆ J . Choose arbitrarily some J ∈ L then I ⊆ J ∪

⋃
(L \ {J}). Since both

J and
⋃

(L \ {J}) are downward-closed and I is directed, it follows that either
I ⊆ J or I ⊆

⋃
(L \ {J}); otherwise there would exist distinct x, y ∈ I such

that x ∈ J but not in I ⊆
⋃

(L \ {J}), and vice versa. The fact that both of
these sets are downward-closed then would imply that x and y have no common
upper bound in I, contradicting that I is directed. Now, if I ⊆ J holds then we
are done. Thus assume I 6⊆ J . Then n > 1 because I is non-empty. From the
induction hypothesis follows that there exists J ′ ∈ L \ {J} such that I ⊆ J ′.
Since J ′ ∈ L, this concludes the prove of the lemma. Using this lemma we can
easily conclude that γ−1

Idl (X1) v γ−1
Idl (X2), i.e., γ−1

Idl is monotone.
It follows that γIdl is an order-isomorphism between DIdl and D↓. �

Let t and u be the least upper bound and greatest lower bound operators on
the poset DIdl(v). These operators exist because D↓ is a complete lattice and
D↓ and DIdl are order-isomorphic according to Proposition 11. The following
proposition then follows immediately.

Proposition 12 DIdl(v, ∅, {S} ,t,u) is a complete lattice.

Let αIdl : D↓ → DIdl be the inverse of γIdl . Since γIdl is an order-
isomorphism, the pair (αIdl , γIdl) forms a Galois insertion between D↓ and DIdl .

Let α = αIdl ◦ α↓ and γ = γ↓ ◦ γIdl . Then (α, γ) forms a Galois insertion
between concrete domain D and abstract domain DIdl . Let postIdl = α◦post◦γ
be the induced best abstract post operator on DIdl and let FIdl be the func-
tion FIdl = λL. α(S0) t postIdl(L). The following proposition is then a simple
consequence of Proposition 11.

Proposition 13 The least fixed point of FIdl on DIdl is the covering set of T :

γ(lfpv(FIdl)) = Cover(T ) .

Can we compute lfpv(FIdl)? In general the answer is “no” for various rea-
sons. First, we may not be able to compute the iterates of the abstract functional
FIdl , respectively, decide the fixed point test on the abstract domain. However,
for the classes of WSTS that are of practical interest, this is not a problem:
We say that the ideal completion Idl(S) of a WSTS T = (S, S0,→,≤) is effec-
tive if (i) for all I1, I2 ∈ Idl(S), checking I1 ⊆ I2 is decidable, and (ii) for all
I ∈ Idl(S), postIdl({I}) is computable. It follows from [47, Theorem 3.4] that
all WSTS with a so called effective adequate domain of limits [52] also have an
effective ideal completion. Classes of WSTS with this property include, e.g.,
Petri nets and their monotone extensions [52], lossy channel systems [47], and
depth-bounded processes, cf. Chapter 2.

Thus, assume that T has an effective ideal completion. Then, for any L ∈
DIdl we can compute FIdl(L) and decide FIdl(L) v L. However, this is not

47



yet sufficient for guaranteeing termination. In general, the covering set of a
WSTS is not computable, i.e., we cannot expect that the sequence of iterates
(
⊔
i≤n F

i
Idl(∅))n∈N stabilizes. In fact, even if the exact covering set Cover(T ) is

computable for a particular WSTS, the sequence of fixed point iterates might
not stabilize because the abstract domain DIdl has (typically) infinite height.
To ensure termination of our analysis, we next define an appropriate widening
operator for the abstract domain DIdl .

3.6.2 Widening

Let us first recall the notion of set-widening operators [33]. A set-widening
operator for a poset X(≤) is a partial function ∇ : P(X) ⇀ X that satisfies the
following two conditions:

• Covering : For all Y ⊆ X, if ∇(Y ) is defined then for all y ∈ Y , y ≤ ∇(Y ).

• Termination: For every ascending chain {xi}i∈N in X(≤), the sequence
y0 = x0, yi = ∇({x0, . . . , xi}), for all i > 0, is well-defined and an ascend-
ing stabilizing chain.

In the following, we define a general set-widening operator for the abstract
domain DIdl . The reason for using a set-widening operator instead of the more
popular pair widening operator is that we want to enable the widening operator
to take into account the whole history of the previous iterates of the fixed point
computation. This allows us to use widening to mimic the effect of acceleration
for computing the exact covering set of flattable WSTS.

The set-widening operator on the abstract domain DIdl is obtained by lifting
a given set-widening operator for the ideal completion Idl(S). This underlying
widening operator on ideals is a parameter of the analysis because it is domain-
specific for each class of WSTS. In the next section, we will describe several
such widening operators for common classes of WSTS.

In general, extending a widening operator from a base domain to its finite
powerset is non-trivial [11]. We can simplify this task by making a stronger
assumption about the ordering ≤ on the base set S: we assume that S(≤) is
not just a wqo, but a bqo. This ensures that the ideal completion Idl(S) is
itself a bqo with respect to the subset inclusion ordering. Using this fact we can
then lift the set-widening operator on ideals to sets of ideals. From a practical
point of view, requiring a bqo is not a real restriction, since all wqos of WSTS
occurring in practice are actually bqos.

Assume that ∇S is a set-widening operator on the poset Idl(S)(⊆). Then
define the operator ∇ : P(DIdl) ⇀ DIdl as follows: for C ⊆ DIdl , if C is a finite
ascending chain C = {Li}0≤i≤n in DIdl(v) let ∇(C) be defined recursively by

∇({L0}) = L0

∇({L0, . . . , Li}) = ∇({L0, . . . , Li−1}) t
{∇S(I) | I maximal ascending chain in ∇({L0, . . . , Li−1}) }

for all 0 < i ≤ n. In all other cases let ∇(C) be undefined.

Proposition 14 If S(≤) is a bqo then ∇ is a set-widening operator for DIdl(v).
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Proof. Proving the covering property is easy. We thus focus on the termi-
nation property. Let C = {Li}i∈N be an infinite ascending chain in DIdl(v).
For deriving a contradiction, assume that the ascending chain {Wi}i∈N defined
by W0 = L0, Wi+1 = ∇({L0, . . . , Li+1}) is not stabilizing. Since the chain
{Wi}i∈N is strictly increasing it follows from the definition of v that for every
i ≥ 1 there exists Ii ∈Wi such that for all I ∈Wi−1, Ii 6⊆ I. Thus consider the
sequence {Ii}i≥1. Then we have by transitivity of v that for all i > 1, 1 ≤ j < i,
and I ∈Wj , Ii 6⊆ I. Since S(≤) is a bqo, so are P(S)(⊆) and Idl(S)(⊆). From
the properties of wqos and thus bqos follows that the sequence {Ii}i≥1 contains
a subsequence {Iik}k∈N with ik < ik+1 for all k ∈ N, such that {Iik}k∈N is
an ascending chain in Idl(S)(⊆). Since ∇S is a set-widening operator for
Idl(S)(⊆), it follows from the termination property that the sequence defined
by J0 = Ii0 , Jk+1 = ∇S({Ii0 , . . . , Iik}) is an ascending stabilizing chain. Let
j be an index where the chain has stabilized, i.e., Jj = Jj+1. By definition
of ∇, we have that for all k ∈ N, Jk ∈ Wik . In particular, Jj ∈ Wij . The
covering property of ∇S then implies that Iij+1 ⊆ Jj+1 = Jj ∈ Wj , which is a
contradiction. �

We now define our analysis in terms of the widening sequence {Wi}i∈N as
follows:

W0 = ∅ and Wi+1 = ∇({W0, . . . ,Wi, FIdl(Wi) tWi})

Note that for computing the image of ∇ in step i + 1 we can reuse Wi. The
properties of set-widening operators, Proposition 13, and Proposition 14 imply
the soundness and termination of the analysis.

Theorem 4 If S(≤) is a bqo then the sequence {Wi}i∈N stabilizes and its least
upper bound approximates the covering set of T , i.e., Cover(T ) ⊆ γ(

⋃
{Wi}i∈N).

Trace Partitioning. Note that, unlike acceleration, the widening operator
∇ does not take into account whether each widened chain of ideals is actually
correlated by some sequence of transition in the system. This incurs an addi-
tional loss of precision that is not needed to ensure termination of the analysis.
To avoid this loss of precision, we can refine the above analysis via combination
with an appropriate trace partitioning domain [103]. The resulting analysis is a
generalized Karp-Miller tree construction where acceleration has been replaced
by widening.

3.7 Set-Widening Operators for Ideal Comple-
tions

We now discuss several instantiations of our analysis for different classes of
WSTS by presenting the corresponding ideal completions and set-widening op-
erators on ideals. We discuss, in turn, Petri nets, lossy channel systems, and
depth-bounded processes.
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3.7.1 Petri Nets

For the complete definition of Petri nets we refer the reader to Section 1.3.2.
Furthermore, the pointwise ordering of markings is a bqo [85]. The ideal comple-
tion Idl(M(S)) of the markings of a Petri net can be represented by extended
markings, which are functions S → N ∪ {ω} [58]. The ordering on extended
markings is given by M ≤ M ′ iff for all s ∈ S, M ′(s) = ω or M(s) ∈ N and
M(s) ≤M ′(s).

Widening for Petri Nets. The set-widening operator ∇PN for a Petri
Net corresponds to the usual acceleration used in the Karp-Miller tree con-
struction for Petri nets. For a finite ascending chain {Mi}0≤i≤n we define
∇PN({Mi}0≤i≤n) = M where M(s) = ω if Mn(s) > M0(s) and Mn(s) oth-
erwise. Clearly this set-widening operator satisfies the covering condition. It
also satisfies termination, since the set of places S is finite.

Precision of the Widening and Monotonic Extensions of Petri Nets.
For standard Petri nets the above widening operator corresponds to the ac-
celeration used in the Karp-Miller tree construction. In fact, for this class of
WSTS our analysis does not lose precision. The reason is that in Petri nets
sequences of firing transitions σ that increase the value of a marking M by
some δ, σ(M) = M + δ, do the same for all larger markings M ′ ≥ M , i.e.,
σ(M ′) = M ′ + δ.

For monotonic extensions of Petri nets the situation is more complicated.
Monotonic extensions of Petri nets include transfer nets and reset nets. In a
reset net a transition can consume all the tokens present in one place in a single
step. In a transfer net a transition can transfer all the tokens from one place to
another place in a single step. In both cases we can use the same widening as for
standard Petri nets, but the analysis may lose precision because neither transfer
nets nor reset nets are flattable, in general. However, for a concrete net the loss
of precision does not depend on the flattability of the net in consideration, i.e.,
there are non-flattable nets where the result of the analysis is exact and flat
nets were the analysis over-approximates the actual covering set.

3.7.2 Lossy Channel Systems

A lossy channel system (LCS) [5] is a tuple (S, s0, C,M, δ) where S is a finite
set of control locations, s0 is the initial location, C is a finite set of channels,
M is a finite set of messages, and δ is a set of transitions. A state of an LCS
is a tuple (s, w) where s ∈ S and w is a mapping C → M∗ denoting the
content of the channels. A transition t is a tuple (s1, Op, s2) where s1, s2 ∈ S
and Op is of the form c !/?m (c ∈ C,m ∈ M). The system can go from state
(s1, w1) to (s2, w2) by firing transition t iff Op = c!m ∧ w2(c) ≤ w1(c)m or
Op = c?m ∧ mw2(c) ≤ w1(c), the remaining channels are unchanged. The
systems are called lossy because messages can be dropped from channels before
and after performing a send or receive operation. The ordering on states ≤ is
defined as (s, w) ≤ (s′, w′) iff s = s′ and for all c ∈ C, w(c) is a subword of w′(c).
The subword ordering is a bqo [85] and thus so is the ordering ≤ on states. In
the following we describe a widening on the content of individual channels. Its
extension to states is defined as expected.

50



The downward-closed sets of the subword ordering are exactly the languages
of simple regular expressions (SRE) [4], which are defined by the following gram-
mar:

atom ::= (m+ ε) | (m1 + . . .+mn)∗

product ::= ε | atom product

SRE ::= product [ + SRE ]

The ideals of the subword ordering are the languages denoted by the products
in SRE. The ordering on the ideals is language inclusion.

Widening for LCS. The first step in defining the widening operator on chan-
nel contents is to define a notion of difference on the corresponding ideals. For
a product p we denote by |p| the number of atoms appearing in p and for
1 ≤ i ≤ |p| we denote by p[i] the ith atom of p.

Let p, q be products. If p ≤ q then we can find a mapping ι : [1, |p|]→ [1, |q|]
such that (i) ι is monotone, i.e., for all i, j ∈ [1, |p|] if i ≤ j then ι(i) ≤ ι(j), (ii)
for all i ∈ [1, |p|] the language of p[i] is included in the language of q[ι(i)], and
(iii) for all i, j ∈ [1, |p|] if ι(i) = ι(j) and q[ι(i)] is of the form (a+ ε) then i = j.
We call ι an inclusion mapping for p ≤ q. Note that we consider an interval [l, r]
to be empty if l > r, i.e., if p = ε then the inclusion mapping exists trivially.

Let p and q be atoms such that p ≤ q and let ι be an inclusion mapping for
p ≤ q. We define an extrapolation operator χLCS for p, q and ι as follows. If
p = ε then χLCS(p, q, ι) = (

∑
i q[i])

∗
. Otherwise, let i1, . . . , in be the increasing

sequence of indices in the range of ι. For each j ∈ [1, n− 1] define the interval
dj = [ij + 1, ij+1− 1]. Furthermore, define d0 = [1, i1− 1] and dn = [in, |q|]. For

all j ∈ [0, n], define sj =
(∑

i∈dj q[i]
)∗

. Note that sj is equivalent to ε if dj is

empty and, otherwise, sj is equivalent to an atom of the form
(∑

kmk

)∗
where

the mk are the messages appearing in the atoms q[i] for i ∈ dj . Then define
χLCS(p, q, ι) = s0 q[i1] . . . sk−1 q[ik] sk.

Inclusion mappings are not necessarily unique. We therefore fix for each
ascending sequence of products p1 ≤ p2 . . . a corresponding sequence ι1, ι2, . . .
such that (1) for all i, ιi is an inclusion mapping for pi ≤ pi+1, and (2) for every
two ascending chains of products that share a common prefix, the corresponding
sequences of inclusion mappings agree on this prefix.

Let π = {pi}0≤i≤n be an ascending chain of products with n > 0. The
set-widening of π is then defined as ∇LCS(π) = χLCS(p0, pn, ι0,n) where ι0,n
is the composition of the fixed sequence of inclusion mappings for π, ι0,n =
ιn−1 ◦ · · · ◦ ι0.

Theorem 5 ∇LCS is a set widening operator.

Proof. The covering requirement for ∇LCS follows easily from its definition.
In the following, we prove the termination requirement. Let p0 ≤ p1 . . . be
an ascending chain of products and let ι0, ι1, . . . be the associated sequence
of inclusion mappings. First, note that if ι is an inclusion mapping for p ≤ q
and ι′ is an inclusion mapping for q ≤ r then ι′ ◦ ι is an inclusion mapping for
p ≤ r. Thus, using induction on n, we can easily prove that for all n ≥ 1, ι0,n is
an inclusion mapping for p0 ≤ pn, i.e., χLCS(p0, pn, ι0,n) is well-defined. Hence,
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define the sequence {yn}n∈N as y0 = po and yn = χLCS(p0, pn, ι0,n) for all n > 0.
Using the definition of χLCS and the ιn one can easily construct an inclusion
mapping between yn and yn+1, for any n ∈ N. It follows that the sequence
{yn}y∈N is an ascending chain. Furthermore, from the definition of χLCS it
follows immediately that for all n ≥ 0, |yn| ≤ 2|p0| + 1. Since the number of
possible atoms is finite (for a fixed set of messages M), the number of atoms in
products of the sequence is bounded, and the sequence is ascending, it follows
that the sequence must be stabilizing. �

Note that one cannot use the operator χLCS to define a standard pair widen-
ing operator ∇ on ideals of the subword ordering: ∇(p, q) = χLCS(p, q, ι)
where ι is an inclusion mapping for p ≤ q. As a counterexample for ter-
mination of this operator consider the following sequence of ideals: x0 = ε,
x1 = (a + ε), x2 = a∗(b + ε), x3 = a∗b∗(a + ε), etc. Applying ∇ pair-
wise on consecutive elements of the sequence leads to the following diverg-
ing sequence: y0 = x0 = ε, y1 = ∇(y0, x1) = a∗, y2 = ∇(y1, x2) = a∗b∗,
y3 = ∇(a∗b∗, x3) = a∗b∗a∗, etc. On the other hand, the set-widening operator
∇LCS produces the stabilizing sequence: y0 = x0 = ε, y1 = ∇LCS({x0, x1}) = a∗,
y2 = ∇LCS({x0, x1, x2}) = (a + b)∗, y3 = ∇LCS({x0, x1, x2, x3}) = (a + b)∗, etc.
For termination, it is crucial that the maximal length of the products provided
as first argument of χLCS is bounded throughout all widening steps. This is for
instance ensured by fixing the first argument of χLCS to one particular element
of the widened sequence (e.g., the first element as in the definition of ∇LCS).
However, one can also define more precise set-widening operators than ∇LCS.
For instance, one may define a set-widening operator ∇k that is parameterized
by a natural number k as follows: ∇k({p0, . . . , pn}) = χLCS(q, pn, ι) where q is
the largest product in {p0, . . . , pn} with at most k atoms, and ι the inclusion
mapping for q ≤ pn. The termination proof for ∇k closely follows the proof of
termination for ∇LCS.

The intuition for the termination of the widening is that the number of
distinct symbols from the set of messages M that appear in the atoms contained
in the widened sequence of ideals increases monotonically. Since M is finite, the
sequence stabilizes, at the latest with the ideal consisting of the single atom(∑

m∈M m
)∗

.

3.7.3 Depth-Bounded Processes

Depth bounded systems were introduced in Section 1.3.3. In Chapter 2 that the
covering problem is decidable for this class. As for many other classes of WSTS,
the problem has non-primitive recursive complexity. This makes depth-bounded
systems a particularly interesting target for approximative analyses.

In Chapter 2 we have shown that the ideals of the ordering on depth-bounded
configurations can be represented by extending process terms with a replication
operator ! to encode that certain subprocesses may be repeated arbitrarily often.
We call these terms limit process terms. For instance the covering set of the
example discussed in Section 3.2 is denoted by the following limit process term:

(νS)(server(S) | env(S) | !(νC)(client(C, S) | !(S(C).0) | !(C().0)))

Remark 3 In the definition of depth-bounded systems the ordering refers to
the set of reachable states. This conflicts with the fact that we computing an
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~x, P, 0 ` P ≤ P Eq

~x, P, F ` P ≤ Q
~x, P, F | F ′ ` P ≤ Q | F ′

|-Frame

~x,R, F ` P ≤ !Q

ε, !P, !((ν~x)(R | F )) ` !P ≤ !Q
!-Frame

~x~x′, R, F ` P ≤ Q
~xz~x′, R, F ` (νz)P ≤ (νz)Q

ν-Subtr

~x,R, F ` P ≤ Q
~x,R | S, F ` P | S ≤ Q | S

|-Subtr

~x,R, F ` P ′ ≤ Q′ P ≡ P ′ Q ≡ Q′

~x,R, F ` P ≤ Q Struct

Figure 3.5: Anti-frame inference rules

overapproximation of the covering set. During the analysis, we might explore
non-reachable states. Therefore, the ordering is not guaranteed to be a bqo. In
this section, we assume that we know the depth of the systems or at least have
an upper bound. This is required to guarantee the termination of the analysis.
In practice, we have implemented the analysis without knowledge of the bound.
Even though, we know how to make examples where the abstraction leads to a
non-terminating analysis we have never encountered such example in practice.

Widening for depth-bounded systems. We first define an extrapolation
operator χDBP on pairs of limit process terms, which we then lift to a set-
widening operator ∇DBP. The extrapolation operator relies on a set of inference
rules for checking validity of clauses of the form P ≤ Q where P,Q are limit
process terms. The inference rules do not just prove P ≤ Q but do a bit more:
given P and Q, the rules derive judgments of the form ~x,R, F ` P ≤ Q. The
semantics is that if ~x,R, F ` P ≤ Q can be derived then (ν~x)R ≡ P and
(ν~x)(R | F ) ≡ Q. We call F an anti-frame1 of P ≤ Q. The anti-frame captures
the difference between process terms P and Q and is crucial for defining the
widening. The anti-frame inference relation (ν~x)(R | F ) ≡ Q is defined by the
rules given in Figure 3.5.

Proposition 15 Let R, F , P , and Q be process terms and let ~x be a list of
names then ~x,R, F ` P ≤ Q iff (ν~x)R ≡ P and (ν~x)(R | F ) ≡ Q.

Proof. The left-to-right direction is proved by induction on the rules defining
the relation ~x,R, F ` P ≤ Q. The case for rule |-Frame is trivial. The case for
rule !-Frame follows from idempotence of ! and the fact that ≡ is a congruence
relation. The case for rule ν-Subtr follows again from the fact that ≡ is a
congruence relation and the axiom for reordering of restricted names. The case

1We use the term “anti-frame” because of the similarity to abduction in entailment provers
for separation logic [23].
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~x, P, 0 . P ≤ P Eq

~x, P, F . P ≤ Q
~x, P, F | !F ′ . P ≤ Q | F ′

|-Extrapolate

~x,R, F . P ≤ !Q

ε, !P, !(ν~x)(R | F ). !P ≤ !Q
!-Frame

~x~x′, R, F . P ≤ Q
~xz~x′, R, F . (νz)P ≤ (νz)Q

ν-Subtr

~x,R, F . P ≤ Q
~x,R | S, F . P | S ≤ Q | S

|-Subtr

~x,R, F . P ′ ≤ Q′ P ≡ P ′ Q ≡ Q′

~x,R, F . P ≤ Q Struct

Figure 3.6: Extrapolation rules

for rule |-Subtr follows directly from the fact that ≡ is a congruence relation.
Finally, the case for rule Struct follows from the fact that ≡ is an equivalence
relation.

For proving the other direction assume (ν~x)(R | F ) ≡ Q and (ν~x)R ≡ P .
Using rule |-frame we infer ε, R, F ` R ≤ R | F . Repeated application of rule
ν-Subtr then gives ~x,R, F ` (ν~x)R ≤ (ν~x)(R | F ). Using the assumption
together with rule Struct finally gives ~x,R, F ` P ≤ Q. �

We now define the extrapolation operator χDBP. First, we modify the anti-
frame inference rules to get the extrapolation rules of Figure 3.6. The modifi-
cation is carefully done in a way that if P ≤ Q then there exist some (R,F, ~x)
such that ~x,R, F . P ≤ Q. This essentially follows from Proposition 15. We
fix one such (R,F, ~x) for each P ≤ Q. The extrapolation χDBP(P,Q) is then
defined as: χDBP(P,Q) = (ν~x)(R | F ).

Lemma 10 Let P,Q be limit process terms such that P ≤ Q. Then P ≤
χDBP(P,Q) and Q ≤ χDBP(P,Q).

Proof. Notice that from a proof that P ≤ Q using the anti-frame inference
rules, we gets an extrapolation proof tree with the same structure. Now we
just need to show that at each step the extrapolated part is larger than the
anti-frame. Only for the |-Frame and |-Extrapolate differs and this trivially
holds since F ′ ≤ !F ′. �

Unit Limits. A limit process term P is called unit if for all limit process
terms R,Q and contexts C such that P ≡ C[R | Q], neither R ≤ Q nor Q ≤ R.
Furthermore, we assume there are no redundant !, i.e. there is no C, R such
that C[ ! !R]. We denote by Unit the set of all units.

We introduce units in order to facilitate the proof of convergence of the
widening operator for depth-bounded systems. We will prove that the extrapo-
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lation/widening progress on the units. Progress combined with Lemma 11 gives
use convergence of the widening.

Lemma 11 The set Unit is finite modulo congruence of limit process terms.

Proof. By induction on the syntax tree of configurations:

Process IDs: A system is defined by a finite set of equations and due to the
depth-boundedness there is only a finite number of names that can be
used as parameters of the processes.

Restriction: Due to depth-boundedness, there are only a bounded number of
nested restrictions.

Replication: By induction hypothesis, there are a finite number of possible
subtrees. Furthermore, replication is idempotent.

Parallel composition: But by definition of units, all of the elements in a
parallel composition should be different. Since ≤ is a bqo, we know that
antichains are finite. Therefore, there is only a finite number of elements
picked from a finite set (induction hypothesis).

Thus, we conclude that there is only a finite number of units. �

We also need to prove that any configuration P is covered by some unit U .
This concretely means that the entire state-space can be covered by units.

Lemma 12 For any configuration P there exists an unit U ∈ Unit such that
P ≤ U .

Proof. As long as P contains a context C such that P ≡ C[R | Q] and
R ≤ Q replace R | Q by !Q to obtain P ′ ≡ C[ !Q]. Then repeat this as long
as P ′ is not an unit. We can easily see that P ≤ P ′. Therefore, when this
procedure finishes we have an U such that P ≤ U . Furthermore, at each
step the number of nodes in the syntax tree of P decreases which means that
procedure eventually terminates. �

For a set of limit process terms π we denote by units(π) the set of units that
are subsumed by elements of π, i.e., U ∈ units(π) iff U ≤ P for some P ∈ π.

Lemma 13 Let P , Q be two limit configurations such that P < Q. Then
units(P ) ( units(χDBP(P,Q)).

Proof. Due to the strictness of P < Q, we know that Q contains a least
one subterm that cannot be covered by P . This means that applying the ex-
trapolation rules gives an inference tree that contains a path starting from a
|-Extrapolate and ending at the root where units(P ) ( units((ν~x)(R | F ))
hold at each step of the inference. First we need to show that the path actually
starts by |-Extrapolate and that the invariant holds at the initial step. Then
we do induction on that path and the extrapolation rules to show that the in-
variant continues to hold. The invariant holding at the root of the extrapolation
tree implies the theorem.
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The path must start with a |-Extrapolate since it is the only rules that
allows removing element on the Q side only which is required since the inequality
between P and Q is strict. We know the P ≤ Q and P < Q | F ′. We can now
distinguish two case:

when P ≥ F ′ by the strictness of P < Q | F ′ we know that it is not a unfold-
ing of a replication in P that covers F ′. Furthermore, the extrapolation
contains !F ′ and it is only possible to cover a replication with another
replication. Thus, we can conclude that units( !F ′) 6⊆ units(P ).

when P 6≥ F ′ it follows that units( !F ′) 6⊆ units(P )

Then we need to show that the formula continues to hold at each step of the
inference, i.e. each rule. We observe that for these cases, the new units returned
by the extrapolation have some replicated components and that the only way
of covering a replicated part is by another replicated part.

Eq: This rules is a leaf rule and since our path starts with |-Extrapolate the
Eq rule is not part of the path.

ν-Subtr: The units are the P side and the extrapolated side are changed in
the same way. Thus, the units not in P are not in (νz)P .

Struct: The rule does not changes the units since ≡ preserves ≤.

|-Extrapolate: Follows directly from the induction hypothesis.

|-Subtr: By induction, we know that units(P ) ( units((ν~x)(R | F )) and be-
cause we are in the path the exhibit the strictness of the inequality be-
tween P and Q we know that P | S 6≤ (Q | S). The later part implies that
there are no replicated part in S that covers Q. Therefore, the units in
S does not cover that units of (ν~x)(R | F ) because it will contains some
additional replicated units.

!-Frame: By induction, we know that units(P ) ( units((ν~x)(R | F )) and be-
cause we are in the path the exhibit the strictness of the inequality between
P and Q we know that !P 6≥ !Q. However, troubles can arise because !
is idempotent, so the units in (ν~x)(R | F ) and !(ν~x)(R | F ) might be the
same. We show by contradiction that this cannot be the case.

Assume that units( !P ) = units( !(ν~x)(R | F )). Because the new unit is
introduced by extrapolation it is a replicated product ( ! distribute over
|), thus F ≡ !F ′ ≡ Πi !fi. If it is not covered by units(P ) but by units( !P )
it means that the new unit in F are not affected by !. Since ! does not
distribute over ν it means that the part in F does not uses any of the name
in ~x. Then, our assumption implies that units(Πi !fi) ⊆ units( !P ). !P < !Q
implies Πi !fi 6≤ !P which in turn implies that there is an i such that
fi 6≤ !P . Therefore, fi ∈ ↓units(F ) and fi 6∈ ↓units( !P ) which contradicts
our additional hypothesis and conclude the proof.

�

For an ascending chain of limit process terms π = (Pi)i∈N we denote by
∇∗DBP(π) the widening chain (Qi)i∈N where Q0 = P0 and Qi = χDBP(Qi−1, Pi)
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if Qi−1 ≤ Pi and Qi = Pi otherwise, for all i > 0. Then ∇DBP(π) is the last
element of the widening chain ∇∗DBP(π).

Theorem 6 ∇DBP is a set-widening operator.

Proof. Assume an infinite ascending chain π such that π is not stabilizing.
First, we show that units(π) ⊆ units(∇∗DBP(π)). By definition of the widening

chain and by Lemma 10, we know that every element of ∇∗DBP(π) is the same
or greater as the corresponding element in π.

Then, we prove by contradiction that ∇∗DBP(π) is stabilizing. Because ≤ is
a bqo and neither π nor ∇∗DBP(π) are stabilizing, χDBP will be applied infinitely
many time on two configurations where the later one is strictly greater. By
Lemma 13, we conclude that we are generating infinitely many new different
units which contradicts Lemma 11. Thus, ∇∗DBP(π) is stabilizing and ∇DBP is a
set-widening operator. �

The intuition behind the termination argument for the operator ∇DBP is
that for an infinite ascending chain of limit processes, ∇DBP gradually saturates
the finitely many nesting levels of restrictions in the process terms of the chain,
which corresponds to the subsumption of new unit limits.

3.8 Further Related Work.

In Section 3.2 we have already explained, in detail, the connection of our work
with acceleration-based algorithms for computing the covering set. We discuss
further connections with algorithms for solving the related coverability prob-
lem. The simplest algorithm for this problem is a backward analysis described
in [3]. In practice, backward algorithms tend to be less efficient than forward
algorithms, especially for dynamic process networks where the pre operator is
expensive to compute, see example 2. Therefore, many attempts have been
made at deriving complete forward algorithms for this problem. The most gen-
eral solutions are described in [52] and [51].

The expand, enlarge, and check algorithm [52] decides the covering problem
using a combination of an under-approximating and an over-approximating for-
ward analysis. The over-approximating analysis relies on a so-called adequate
domain of limits for the representation of downward-closed sets, which is actu-
ally the ideal completion of the underlying well-quasi ordering [47]. Ganty et
al. propose an alternative algorithm [51] based on abstract interpretation. Un-
like our approach, this algorithm uses a finite abstract domain that represents
downward-closed sets by complements of upward-closed sets. The algorithm
then relies on a complete refinement scheme to refine the abstraction for a spe-
cific coverability goal. Both algorithms [52, 51] compute an over-approximation
of the covering set as a byproduct of the analysis, namely an invariant whose
complement contains the coverability goal. To ensure completeness, the preci-
sion of this computed invariant is geared towards proving the specific instance of
the coverability problem. Instead, our analysis computes a precise approxima-
tion of the covering set that is independent of any specific coverability instance.

Another research direction goes toward a better understanding of flattabil-
ity and completeness of acceleration based aglrorithm. [47] propose the clover
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algorithm that is complete for flattable system and [27] identify the class of
trace-bounded WSTS. Trace-bounded WSTS are interesting because (1) their
are flattable and (2) it is decidable to determine whether a system is trace-
bounded.

Summary

We proposed a novel abstract interpretation framework to compute precise ap-
proximations of the covering set of WSTS. Our analysis captures the essence of
acceleration-based algorithms that compute the exact covering set but only ter-
minate on flattable systems. By replacing acceleration with widening we ensure
that our analysis always terminates. We discussed several concrete instances
of our framework including the application to depth-bounded process networks,
which are typically non-flattable.
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Chapter 4

Implementation: Picasso

We implemented the results presented in Chapter 2 and Chapter 3 in the Pi-
casso tool, a static analyzer for depth-bounded systems. Furthermore, Picasso
generalises the π-calculus version of depth-bounded systems to graph rewriting
systems, thus offering more flexibility. Picasso computes the covering set of
depth-bounded systems and can also generate abstraction of depth-bounded
systems as numerical transition systems. We have used Picasso to automat-
ically verify safety and liveness properties of complex concurrent systems such
as nonblocking and distributed algorithms, as well as sequential object-oriented
code.

This chapter is joint work with Thomas A. Henzinger and Thomas Wies. It
has not yet been published.

4.1 Overview

Graph rewriting systems [42] provide a formalism for describing concurrent com-
putations. In particular, they can model concurrent programs with message
passing, dynamic thread creation, dynamically changing communication topol-
ogy, and complex shared heap structures.

In this part, we express depth-bounded systems, not in terms of π-calculus,
but as graph rewriting systems. This new formalism, make depth-bounded sys-
tems more intuitive to understand and more flexible to use. A graph rewriting
systems is depth-bounded if there exists a bound on the length of all acyclic
paths in all reachable graphs of the system. Often, the graph rewriting models
of concurrent programs are depth-bounded or have natural depth-bounded ab-
stractions that preserve important properties such as safety, cf. Chapter 3, and
progress guarantees, cf. Section 5.1.

We present Picasso, a static analyzer that takes a DBS as input and com-
putes an over-approximation of its covering set. In general, the covering set of
a DBS is not computable, thus the over-approximation. However, Picasso im-
plements an algorithm that exploits the monotonic structure of DBS and often
yields precise results. Picasso accepts DBS in two input formats: a low-level
format, in which the system is specified directly in terms of graph rewriting
rules, and a high-level process algebra notation, which is compiled to graph
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rewriting rules. In addition to computing the covering set, Picasso can also
produce a numeric program that abstracts the input DBS and is subject to
further analysis by other verification tools.

We have successfully used Picasso to verify safety and liveness properties
of DBS that model complex infinite state systems. This includes non-blocking
implementations of concurrent data structures and distributed message-passing
algorithms with an unbounded number of threads and messages.

4.2 Example

Map-reduce example. We show how Picasso works on an example that
is inspired by an implementation of a map-reduce algorithm [62, Chapter 9]
in Scala using the Scala actor library. 1 An actor is a heap object that
has an associated thread of execution. All actors execute concurrently and
communicate through asynchronous message passing, i.e., references between
actors on the heap can also be thought of as communication channels.

The map-reduce algorithm takes a collection of data elements as input and
computes a set of key/value pairs. The algorithm consists of two stages: the
mapping and the reduction stage. In the mapping stage each input data value
is mapped to a set of key/value pairs. In the reduction stage, the values across
all input data that are associated with the same key are aggregated and then
reduced to a single key/value pair. A typical example of an application of map-
reduce is counting key words in web documents. The input data is a set of web
documents. The mapping stage counts the occurrences of the key words in each
document. The reduction stages sums up the occurrences for all documents.

In the implementation of the mapping stage, the master actor creates a
worker actor for each element of the input data and sends the data to the
workers, which apply the mapping function and send the lists of key/value pairs
back to the master. In the reduction stage, the master creates a reducer actor
for each key and sends it the aggregated values for that key. The reducer then
reduces all these values to a single value which is again sent back to the master.

DBS model. We model the example using a set of graph rewriting rules that
define a depth-bounded system. Heap objects (including actors) are represented
by nodes in the graph and references between objects by edges. Each node is
labeled by the internal state of the associated object and each edge is labeled by
the name of the associated reference variable. We require that the set of node
labels is finite. This is ensured by applying a form of predicate abstraction to
the internal state of each object, yielding a finite partition of internal states into
equivalence classes, each of which is represented by a unique label. For instance
the node corresponding to an actor is labeled with the class of the object and
the value of the program counter of the associated thread, e.g. master1 for an
instance of the master actor at program location 1.

Graph rewriting rules. We use an adaptation of graph rewriting systems
with single pushout [42] on labeled directed graphs. A rewriting rule is com-
posed of two graphs, the left-hand-side (LHS) and the right-hand-side (RHS),

1The full example and the analysis output generated by Picasso are available at http:

//pub.ist.ac.at/~zufferey/picasso/mapReduce-report.html
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and a partial morphism m between the two graphs. Intuitively, applying a rule
to a graph G has the following semantics: the LHS is tested for inclusion in G;
if no subgraph of G matches the LHS, the rule does not apply. Otherwise, if a
subgraph of G matches the LHS, it is replaced by the RHS. Hereby, the mor-
phism m is used to preserve the edges connecting nodes outside of the matching
subgraph to nodes inside that subgraph.

Rule extensions: wildcards and guards. Picasso provides two extensions
of the standard graph rewriting rules to obtain more succinct representations of
models:

• Wildcards: A wildcard is a special node label that is denoted by the
underscore symbol . When matching the LHS of a rule in a graph G,
a wildcard matches against all possible labels and is instantiated by the
matching. This is useful for translating code that applies to an object
regardless of what its internal state is. Using wildcards, we can model the
behavior of such code using a single rewriting rule.

• Guards: A rewriting rule can be guarded by an inhibitory graph. The
semantics is that the rewriting rule should not fire on a graph G if the
inhibitor can be matched to a subgraph of G.

Figure 4.1 shows a transition that models a step of the reduction stage in which
a reducer has reduced its last value, sends the accumulated value back to the
master, and then terminates. The inhibitor graph in the guard is used to express
that all values have been reduced. The wildcard is used to match the master
actor, regardless of what its internal state is. The blue edges indicate morphisms.

key

value

_

reducer

key

_

key

value

result

Guard LHS RHS

value

Figure 4.1: A rewriting
rule

Analysis approach. Our map-reduce model is a
DBS because the rewriting rules do not create arbi-
trarily long chains of nodes in the reachable graphs.
The model is parameterized by the number of in-
put data values and keys. Hence, the number of
created mappers, reducers, and key/value pairs is
unbounded. Nevertheless, DBS can be effectively
analyzed because they are well-structured with re-
spect to the subgraph ordering [80]. The underlying
analysis algorithm of Picasso is based on ideal ab-
straction [117], which is an abstract interpretation
for computing precise over-approximations of the
covering set of a WSTS. Picasso implements ideal
abstraction for the concrete case of DBS.

Nested graphs. Ideal abstraction exploits the fact that every downward-
closed subset of a well-quasi ordered set can be decomposed into a finite union
of order ideals. This yields a finite representation of infinite downward-closed
sets such as the covering set of a WSTS, and is key to an effective analysis of such
systems. The ideals of DBS can be represented as finite hedge automata [112],
or more intuitively as nested graphs. A nested graph represents the downward-
closure of all graphs that are obtained by recursively unfolding the nested sub-
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graph components. For example, Figure 4.2 shows a nested graph that repre-
sents the downward-closure of the set of initial states of the map-reduce exam-
ple. We indicate the nested subgraphs by surrounding them with a dashed box.

master

input

Figure 4.2: Ini-
tial states of map-
reduce

That is, the graph in Figure 4.2 represents a master actor
with an arbitrary number of associated input data values.

Computing the Covering Set. For some classes of
WSTS, the covering set is computable precisely. A promi-
nent example are Petri nets for which the covering set
can be computed using acceleration-based algorithms such
as the Karp&Miller tree construction. Unfortunately,
the covering set of a DBS is not computable in general.
Ideal abstraction solves this problem by mimicking the
Karp&Miller tree construction for Petri nets [73], but re-
placing acceleration with widening to ensure termination
at the cost of precision. In the case of DBS, this analysis computes an abstract
coverability tree whose nodes are nested graphs. The tree is constructed starting
from the root note which represents the initial states of the system. Whenever
an unprocessed leaf node of the tree is not yet subsumed by a processed node,
it is expanded. The expansion adds successor nodes for all nested graphs that
are obtained by exhaustive symbolic application of the rewriting rules of the
system. Figure 4.3 shows the individual steps of a symbolic application of the
rewriting rule in Fig. 4.1. These steps are as follows:

• Unfolding: When the LHS matches a part of a nested subgraph, we unfold
the nested subgraph to get a concrete copy of the matched part.

• Inhibiting: The extension of rewriting rules with guards potentially breaks
the monotonicity property that is required for WSTS. Therefore, we use
the idea of monotonic abstraction [2] to obtain a sound implementation
of guarded rewriting rules. Monotonic abstraction adds additional tran-
sitions to the model to enforce monotonicity. Concretely, if the inhibitor
graph matches a graph G, we remove the matched part from G to obtain
G′ on which we apply the rewriting rule as usual. Since G′ is not neces-
sarily reachable in the original system, guarded rules introduce a potential
source of incompleteness to the analysis (the other source of incomplete-
ness is widening).

• Rewriting: The unfolded match of the LHS is replaced by the RHS.

• Folding: To maintain a compact representation of nested graphs in the
tool, we fold nested graphs by removing subgraphs which are subsumed
within the nested graph itself.

The final nested graph that results from the rule application in Fig. 4.3 is identi-
cal to the nested graph to which the rule has been applied. Hence, it is subsumed
and does not need to be expanded further. All nested graphs that are not sub-
sumed after an expansion step are recursively widened with their ancestor nodes
in the tree. This ensures that the construction of the abstract coverability tree
eventually terminates. The set of all nodes in the resulting tree represents a
downward-closed inductive invariant of the system and, hence, subsumes the
covering set.
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Figure 4.3: Symbolic application of the rewriting rule from Fig. 4.1 to a nested
graph

4.3 From π-calculus to graphs

We now present in a formal way the graph rewriting systems that Picasso
handles and how limits, originally the replication in π-calculus, are represented
as nested graphs.

Graph transformation systems. We use an adaptation of the standard
notion of graph transformation systems with the single pushout approach [42]
to labeled directed graphs.

A rewriting rule is a partial morphism r : GL ⇀ GR, where GL is called
left-hand side and GR is called right-hand side. A match of r is a total injective
morphism m : GL → G. Given a rule r and a match m : GL → G, a rewriting
step is the pushout of r and m, which consists of a graph H and two graph
morphisms r′ : G ⇀ H, m′ : GR → H such that m′ ◦ r = r′ ◦m and for every
pair of morphisms r′′ : G ⇀ H ′ and m′′ : GR ⇀ H ′ there exists a unique
morphism f : H ⇀ H ′ with f ◦ m′ = m′′ and f ◦ r′ = r′′. It is known that
pushouts are guaranteed to exist, that they are unique up to isomorphism and
that they can be effectively constructed.

A graph transformation system (GTS) R is a tuple (R,G0), where R is a
set of rewriting rules and G0 an initial graph. A GTS R = (R,G0) induces

a transition system T (R) = (Graphs, G0, R,
R−→) where R is a finite set of

rewriting rules, and
R−→ is the union of all relations

r−→, for r ∈ R. The
subgraph ordering � is monotonic with respect to graph rewriting.

Lemma 14 Let R = (R,G0) be a GTS, then � is monotonic with respect to
R−→.

Proof. Given three graphs G, G′, H, a rewrite rule r : GL ⇀ GR, and a
match m such that G � G′ and r and m applied to G gives r′ : G ⇀ H and
m′ : GR → H. We construct a graph H ′ such that H � H ′ and a morphism
r′′ : G′ ⇀ H ′ such that r′′ and m′ are the pushout of r and m on G′, H ′. r′′

is obtained by adding to r in the following way: r′′ = r′∪{(v, v) | v ∈ G′\G}. �

The depth of a graph G is the length of the longest simple path in the
undirected version of G, obtained by taking the symmetric closure of the edges.
For k ∈ N, we denote by G≤k the set of all graphs with depth at most k. We say
that a set of graphs G is depth-bounded if G ⊆ G≤k for some k ∈ N. A depth-
bounded system (DBS) is a GTS R = (R,G0), whose reachable configuration
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graphs are depth-bounded, i.e., Reach(T (R)) ⊆ G≤k, for some k ∈ N. We call
k a bound of the system. From Proposition 4 it follows that � is a wqo on
depth-bounded sets of graphs.

Lemma 15 For any k ∈ N, (G≤k,�) is a bqo.

Proof. Using Laver’s theorem [75], see Proposition 4. �

Thus, Lemmas 14 and 15 imply that depth-bounded GTSs induce WSTSs.

Theorem 7 Let R = (R,G0) be a DBS, then (Cover(R), G0, R,
R−→,�) is a

WSTS.

Nested graphs. We represent downward-closed depth-bounded sets of graphs
as finite sets of nested graphs. Formally, a nested graph Ĝ is a tuple (V,E, ν, l)
where (V,E, ν) is a labeled graph and l : V → N maps each vertex to its nesting

level. We abuse notation and denote the labeled graph of a nested graph Ĝ by
G. We extend the notion of homomorphism to nested graphs as expected, i.e.,
homomorphisms on nested graphs also preserve the nesting levels of vertices.

Intuitively, a nested graph Ĝ represents the set of concrete graphs that can
be obtained by recursively unfolding the nested subgraphs of Ĝ arbitrarily often.
In the following, we make these notions formal.

We define a one-step unfolding relation on nested graphs Ĝ = (V,E, ν, l) and

Ĥ = (V ′, E′, ν′, l′), denoted Ĝ  Ĥ, as follows. For i ≥ 1, denote all vertices
at nesting level i or higher by V≥i = { v ∈ V | l(v) ≥ i }. Unfolding involves
duplicating the subgraph induced by V≥i and reducing the nesting level of all

vertices in the copy of V≥i by one. Formally, we have Ĝ Ĥ iff for some i ≥ 1
there exists a partition U,W1,W2 of V ′ and a homomorphism h : H → G such
that H[U ∪W1] ∼= G ∼= H[U ∪W2], H[W1] ∼= G[V≥i] ∼= H[W2] under (natural
restrictions of) h, W1 ×W2 ∩E′ = ∅, for all v′ ∈ V ′ \W2, l′(v′) = l(h(v′)), and
for all v′ ∈W2, l′(v′) = l(h(v′))− 1. When required, we refer to the underlying

homomorphism by saying Ĝ Ĥ under h.
We then define the concretization γ(Ĝ) of a nested graph Ĝ as the downward

closure (with respect to the embedding order) of the set of all unfoldings of Ĝ:

γ(Ĝ) = ↓
{
H | Ĝ ∗ Ĥ

}
We extend γ to sets of nested graphs Ĝ as expected: γ(Ĝ) =

⋃
Ĝ∈Ĝ γ(Ĝ).

Example 4 In Figure 4.4, we show a nested graph Ĝ one the left and a possible
unfolding on the right. The left replicated subgraph is unfolded three times; the
right one twice; the inner ones twice and 0 time respectively.

Inclusion of Nested Graphs. We next show that inclusion on nested graphs
is decidable. Let Ĝ = (V,E, ν, l) and Ĥ = (V ′, E′, ν′, l′) be nested graphs.

Define the relation v on nested graphs as Ĝ v Ĥ iff γ(Ĝ) ⊆ γ(Ĥ). An inclusion

mapping for Ĝ and Ĥ is a homomorphism ĥ : (V,E, ν)→ (V ′, E′, ν′) satisfying

the following additional properties: (i) for all v ∈ V , l(v) ≤ l′(ĥ(v)); (ii) ĥ
is injective with respect to level 0 vertices in V ′: for all v, w ∈ V , v′ ∈ V ′,
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Figure 4.4: One the left a nested graph and, one the right, one possible unfolding
of the graph.

ĥ(v) = ĥ(w) = v′ and l′(v′) = 0 implies v = w; (iii) for all distinct u, v, w ∈ V
such that ĥ(u) = ĥ(v), and u and v are both neighbors of w, l(u) > l(w) and
l(v) > l(w).

Theorem 8 Let Ĝ and Ĥ be nested graphs. Then Ĝ v Ĥ iff there exists an
inclusion mapping ĥ : Ĝ → Ĥ. The problem of deciding the existence of ĥ is
NP-complete.

To see that the problem is in NP, note that each of the conditions for inclusion
mapping can be checked in polynomial time. NP-hardness follows from the fact
that the problem subsumes the subgraph isomorphism problem.

Nested graph rewriting. We lift application of rewrite rules to nested
graphs by using inclusion mappings as the notion of a match. Intuitively, inclu-
sion mappings allow us to apply the rewrite rule to an unfolding of the graph
that contains the left-hand-side of the rule as a subgraph. Formally, we extend
the notion of pushout to nested graphs in a natural way by using the homomor-
phisms defined on nested graphs. For a rewriting rule r : GL → GR, naturally
lift the notion and define r̂ : ĜL → ĜR. A match of r̂ is an inclusion mapping
m̂ : ĜL → Ĝ.

Lemma 16 Given a rule r̂ : ĜL → ĜR and a match m̂ : ĜL → Ĝ, there exists
a nested graph Ĝ′ and an injective inclusion mapping ĥ : ĜL → Ĝ′ such that
Ĝ ∗ Ĝ′. Moreover, Ĝ′ and ĥ can be constructed in polynomial time.

Let Ĝ′ be the nested graph and ĥ : ĜL → Ĝ′ the injective inclusion mapping,
as described in Lemma 16. Then there exists a pushout r̂′ : Ĝ′ ⇀ Ĥ, ĥ′ : ĜR →
Ĥ for r̂ and ĥ. This pushout defines a rewriting step of nested graphs Ĝ

r̂−→ Ĥ.

Guarded rewrite rules and monotonic abstraction. A guarded rewriting
rule is a pair of partial morphism (i : GL ⇀ GI , r : GL ⇀ GR), where r : GL ⇀
GR is a rewriting rule and GI if the guard (or inhibitor). Intuitively, given a
matchm : GL → G the rule can be applied only if there is no matchm′ : GI → G
such that m ◦ i ⊆ m′. Unfortunately, this extension breaks the compatibility
requirement of WSTS. It is trivial to encode Petri net with inhibitory edges
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with guarded rewrite rules. This reduction shows that guards make the model
Turing-complete. Therefore, we use the idea of monotonic abstraction [2] to
give a new monotonic semantics to guarded rules. In our case, we remove the
parts matched by the guard and apply the rule on the trimmed graph.

Let (i, r) be a rewrite rule. We denotes by Vi the nodes which are in the
pre-image of i and V¬i the nodes which are in GI but not in the pre-image of i.

A rewrite rule (i, r) is well-formed if for all G and all match m : GL → G
there is no match m′ : GI → G such that m′(V¬i) ∪ m(GL) 6= ∅. Intuitively,
well-formedness means that the guard does not removes nodes which are used by
the rewrite rule. It can be enforced by simple sufficient check such as requiring
i to be surjective.

To apply a well-formed guarded rewrite rule (i, r) and a match m : GL → G
we need to distinguish two cases:

While there is some m′ : GI → G such that m ◦ i ⊆ m′: We restrict G to
G′ = G\m′(V¬i), and m to m′′ similarly. Then we check for the existence
of a new m′.

Otherwise: The rule is the pushout defined by r and m.

4.4 The Tool

Picasso is available for download at [116]. The website provides a binary and
source code distribution of the tool, as well as read-only access to the SVN
repository that we use for development.

External dependencies. Picasso is written in the Scala programming lan-
guage and runs on the JVM. Many of the computation steps in the construction
of the abstract coverability tree, such as inclusion tests and the computation of
matches, are reduced to satisfiability of propositional formulas. Picasso uses
Sat4J [20] to solve the generated SAT instances. When Picasso is used to com-
pute the numerical abstraction of a DBS, it additionally requires Princess [104]
and Z3 [1] to discharge quantifier elimination and satisfiability queries in (quan-
tified) linear integer arithmetic.

4.4.1 Input formats

Picasso has two main frontends: the graph rewriting frontend presented in
Section 4.2 and a simple high-level language inspired by actor-model languages.
In fact, this language just provides a convenient syntax for sets of recursive
equations in the π-calculus [88]2. The programs written in the actor language
are compiled into a graph rewriting system and then analyzed as such. Further
examples as well as instructions to run Picasso can be found at [116].

We describe the two input languages in the extended Backus-Naur form.
Grammar rules are in italic, terminal symbols in texttt. {} denotes repetition
and [] denotes optional terms.

2Picasso actually derives its name from this fact. It stands for Pi-calculus-based static
software analyzer.
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EBNF grammar of the graph rewriting systems. The graph rewriting
input language is offers a lot of flexibility and allows one to write very compact
program that can be efficiently analyzed by Picasso. The graph language, at
first, was not supposed to be Picasso primary input, but a convenient way
of testing the backend by providing an input that directly matches the data-
structures used in the backend. For instance, we will see that a transition has
a forward and backward mapping (==>,<==). Both could be simplified into the
same mapping to make the input simpler, but Picasso uses both mapping in
its internal representation and this particularity stayed in the language.

A graph rewriting system is given as an initial graph and a set of graph
rewriting rules (transitions). The graph are labelled directed graphs where the
labels are both on the nodes and the edges. Therefore, nodes have both an
identifier and a label. The identifier is unique to each node. On the other hand,
many nodes can have the same labels. We first describe the graphs (i.e. nodes
and edges) and then the transitions.

A node consists of an identifier and a label. In case the label is not known,
it is possible to have a special wildcard label (denoted ). Furthermore, it is
possible to specify the multiplicity (nesting depth) of a node using ∗.

node ::= ( ident , label )
| ( ident , )

| node*

An edge is given by a pair of nodes. Optionally, the edge can be labelled.
edge ::= node -> node [ [ label ] ]

A graph is given by a sequence of edges. In case a node is not connected, it can
be declared by prefixing it with ”node”.

graph ::= { edge | node node }
A mapping is a dictionary between nodes identifiers. It is given by a sequence
of pairs.

mapping ::= { ident -> ident }
A transition transform a subgraph (pre) into another one (post). The pre is
matched within a larger graph (subgraph) and then replaced by the post. To
preserve the connections with the rest of the graph during the replacement, the
nodes in pre and post need to be connected by mappings. The forward mapping
(==>) maps non-wildcard nodes from pre into non-wildcard nodes of post. The
backward mapping (<==) maps wildcard nodes of post to wildcard nodes of pre.
It is also possible to specify an inhibitory pattern that prevent the transition
from firing.

transition ::= transition stringLit
pre graph
post graph
==> mapping
<== mapping
[ no graph ]

A system is given by an initial state (a graph), a sequence of transitions, and,
optionally, a target state.

system ::= init graph { transition }
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init (e, env) -> (s, server) [S]

transition "new client"

pre (e, env) -> (s, server) [S]

post (e, env) -> (s, server) [S]

(c, client) -> (s, server) [S]

==> e -> e

s -> s

<==

transition "request"

pre (c, client) -> (s, server) [S]

post (c, client) -> (s, server) [S]

(m, msg) -> (s, server) [S]

(m, msg) -> (c, client) [C]

==> s -> s

c -> c

<==

transition "reply"

pre (m, msg) -> (s, server) [S]

(m, msg) -> (c, _) [C]

post (r, reply) -> (c, _) [C]

node (s, server)

==> s -> s

<== c -> c

transition "receive reply"

pre (r, reply) -> (c, _) [C]

post node (c, _)

==>

<== c -> c

Figure 4.5: Example of a graph rewriting system for Picasso

Example 5 Figure 4.5 shows a simple client-server example in the spirit of
Figure 3.1. The process consists of one single server thread, an environment
thread, and an unbounded number of client threads. In each loop iteration of
a client, the client non-deterministically chooses to either wait for a response
from the server, or to send a new request to the server. Requests are sent
asynchronously and carry both the address of the server and the client. In each
iteration of the server loop, the server waits for incoming requests and then
asynchronously sends a response back to the client using the client’s address
received in the request. The environment thread models the fact that new clients
can enter the system at anytime. In each iteration of the environment thread, it
spawns a new client thread. The initial state of the system consists only of the
server and the environment thread.

EBNF grammar of the basic frontend. The so-called basic input lan-
guage is a layer of syntactic sugar on top of the asynchronous π-calculus. The
goal is to have an human readable language that looks like some of the early
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actor languages. Channels are orthogonal to actors, as names are orthogonal to
threads in π-calculus.

A program written in this language is first transformed by Picasso into a
graph rewriting system and the processed in the same way a graph program.

The messages are described/matched using expressions/patterns. Then
process provides a simple imperative language. Reception is done using a select

statement that corresponds to the Σ in π-calculus. Each case of a select specify
a channel and a pattern that the message to receive must match. Like in the
orignal semantic of the actor model, messages are exchanged asynchronously
and does not preserve the ordering between the messages.

A literal is either true, false, or a string literal (stringLit).

A pattern is either a wild card, a literal, an identifier, or a constructor.
pattern ::=

| literal
| ident [ ( pattern { , pattern } ) ]

An expression is either a wild card (for undefined values), a literal, an identifier,
or a constructor. The special newChannel() expression is not interpreted as a
constructor but as the restriction operator (ν) of the π-calculus.

expression ::=
| literal
| ident [ ( expression { , expression } ) ]

A process is a sequence of statements where statements can be variables (or
constant) declarations, affectation, sending a message, creating a new actor, an
if statement, a while loop, or a receiving a message.

process ::= begin [ process { ; process } ] end
| var ident := expression
| val ident := expression
| ident := expression
| expression ! expression
| expression
| new ident ( [ expression { , expression } ] )
| if expression then process [ else process ]
| while expression do process
| select { case expression ? pattern => process}

An actor is just a syntactic unit that binds the free parameters occurring in a
process.

actor ::= ident ( [ ident { , ident } ] ) process

The initial configuration of the system is a list of actors. Identifiers in the
arguments of the actors are assume to be top-level bounds names.

initial ::= initial ident ( [ ident { , ident } ] )
{ ; ident ( [ ident { , ident } ] ) }

Example 6 Figure 4.6 shows a simple ping-pong example inspired from the
example in Figure 1.1 and 1.2. There are two main difference compared to
the Scala version. First, we do not yet support integers. Therefore, we have
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Ping(self, pong)

while true do

select

case self ? Start() => pong ! Ping(self)

case self ? SendPing() => pong ! Ping(self)

case self ? Pong() =>

if random() then self ! SendPing()

else begin

pong ! Stop();

exit()

end

Pong(self)

while true do

select

case self ? Ping(sender) => sender ! Pong()

case self ? Stop() => exit()

Main()

begin

val ping := newChannel();

val pong := newChannel();

new Ping(ping, pong);

new Pong(pong);

ping ! Start()

end

initial

Main()

Figure 4.6: Example of an actor program for Picasso

replaced the counter by non-deterministic choice. Second, in scala each actor
has its own channel. In our language the notions of channels (names) and
processes are decoupled like in the π-calculus. Thus, the receive operations has
to explicitly specify from which channel it is receiving.

4.4.2 Analyses and outputs

The default analysis of Picasso is to compute the covering set of a given depth-
bounded systems. Picasso produces an HTML report that contains the textual
input and a graphical representation of the rewrite rules, the nested graph rep-
resenting the initial states, and the computed covering set. If the input system
is expressed in terms of the high-level actor language, then the control-flow
automaton of each actor is also included in the report.

Algorithm. Picasso is designed to be modular and different algorithms to
compute the covering set have been implemented. The main algorithm is base
on the Karp&Miller tree algorithm with a few optimisations to reduce the size of
the tree. Algorithm 1 contains an high-level pseudo-code sketch of the algorithm
used. We are building the abstract coverability tree using a depth-first search
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and we are never cutting a subtree when a new branch subsumes an already
computed branch. In that sense, our optimization produces slightly smaller trees
compared to the full tree. The resulting tree may still contain redundancies,
i.e., we are not computing the smallest tree as in the minimal covering tree
algorithm [46] and thus avoid the problem of that algorithm [53].

Theorem 9 Algorithm 1 computes Cover(T ).

Proof.

Correctness: Line 2 ensures that the algorithm computes an inductive invari-
ant. If the test returns true then the algorithm has already visited a state
s′ which is greater or equal the current state s. This follows from the fact
that cover variable contains a downward-closed set. By monotonicity, s′

can cover all the states that s can cover. Therefore, we can stop exploring
the successors from s. In this step we rely on the fact that s′ (and its
successors) will never be removed from the tree (unlike [46]).

Termination: Assuming that the algorithm do not terminates would create
infinite strictly ascending chain on line 5. (The bqo prevents infinite de-
scending chain or antichain.) Therefore, contradicting the property of ∇
which ensures that every ascending chain eventually stabilizes.

�

Algorithm 1 Algorithm to compute the covering set of T
Input: a depth-bounded system T
Output: Cover(T )
1: function build tree(ancestors, node, cover)
2: if node.conf ∈ cover then
3: return cover
4: else
5: node.conf ← ∇( ancestors.filter( .conf ≤ node.conf), node.conf)
6: for all c1 ∈ Post(node.conf) do
7: n ← new node()
8: n.conf ← c1
9: node.children.append(n)

10: cover ← build tree(ancestors + node, n, ↓(cover + node.conf))
11: end for
12: return cover
13: end if
14: end function
15: root ← new node;
16: root.conf = s0;
17: return build tree([], root, ∅)

On top of Algorithm 1 Picasso implements some optimizations to make the
algorithm more scalable. For instance, at line 5, we do not use all the nodes, but
we select them with an exponential back-off strategy. This allows Picasso to
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Figure 4.7: Comparison between two representations of nested graphs

explore deeper covering trees. Furthermore, to counter the slowdown incurred
by the growth of the tree we have implemented a restart policy. After 5 minutes
Picasso restarts the exploration by using the unexplored leaves of the current
tree as roots for new trees. The new search continues with the current value of
cover.

Numerical abstraction of depth-bounded systems. The computed cov-
ering set can be used to verify safety properties of the analyzed system. In
addition, Picasso supports an analysis for proving (fair) termination of the
input depth-bounded systems [13]. In this mode, the report will contain a
numerical abstraction of the depth-bounded systems that is expressed in the
format of the termination checker ARMC [98]. When ARMC is available, Pi-
casso will directly run it on the numerical abstraction. If ARMC is able to
prove termination of the numerical abstraction, then also the original system is
guaranteed to terminate. The numerical abstraction can also be printed in the
Numerical Transition Systems [69] (NTS) format and then analyzed with
tools supporting this format, e.g. such as Flata [21] or Eldarica [66].

Remark 4 (Picasso’s representation of nested graphs.) Due to the in-
ternal representation of nested graphs in Picasso and some laziness of the
programmer, Picasso displays nested graphs in a sightly more primitive and
less user-friendly way than most of the figures in this documents. Instead of
showing the replicated subgraphs by surrounding them with line, Picasso prints
the node in the format ( label, depth) where the depth is the nesting depth of
the node in the π-calculus sense, i.e. how many replication operator surrounds
the terms. Figure 4.7 shows two version of the same graph, one in each format.

Example 7 Figure 4.8 and 4.9 shows the output of Picasso on Example 5.
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The first figure shows a graphical representation of the rewrite rules given as
text to Picasso. This does not involve analysis per se, but it is useful to check
the rules are correct. It is easier to spot mistakes on the pictures than on the
text. The transitions have a graph for the left-hand-side (LHS) and one for the
right-hand-side (RHS). The forward mapping is shown in blue and the backward
mapping in green.

The second picture shows the result of the analysis, i.e. the covering set and,
optionally, the Karp&Miller tree. In the Karp&Miller tree, the black arrows
between graph represents the successor relation and the blue arrow the covering
relation. When a graph is covered by an already existing graph the exploration
successors of that node are not explored.

Example 8 Figure 4.10, 4.11 and 4.12 shows parts of the output of Picasso
on example 6.

Figure 4.10 shows that control-flow automata (CFA) of the Ping and
Pong actors. The initial states of the CFAs are shown as octagons. Note
that the CFAs don’t have final states, instead the action {} which stands
for exit() plays that role. The convention for the naming of the state is
actor name(#line.#col).

Then the CFAs are translated into rewrite rules. Figure 4.11 shows the
translation of a few selected kinds of statements. The total number of rewrite
rule for this example is 18. Nodes carries as label either the control location
of an actor or name. names nodes represent channels (in the π-calculus) sense.
Edges from actors are labelled by the name of the variable referencing the pointed
node. A message (or constructor in the grammar) is encoded in a similar way.
The edges have numbers that corresponds to the position of the argument and a
special to edge points to the recipient.

Finally, Figure 4.12 shows the Karp&Miller tree. Since this example is
bounded (number of processes and messages), the nested graphs representation
does not give any advantage compared to an explicit representation. Therefore,
we show only the Karp&Miller tree as most of its nodes are part of the covering
set.

As we already mentioned Picasso is also able to generate (labelled) nu-
merical abstraction that simulates a given depth-bounded systems. The main
purpose of this abstraction is proving termination of depth-bounded systems. In
Section 5.1 we will see how the abstraction is generated along with examples.

4.5 Evaluation

Picasso combines the ideal abstraction domain with a trace partitioning do-
main [103]. The resulting analysis is a generalized Karp&Miller tree construc-
tion with widening instead of acceleration. The implementation is parameterized
by the concrete ideal completion and the widening operator on ideals that are
used in the analysis. The tool Picasso and the example programs are available
on-line [116].

For the analysis of our examples we have implemented a generalization of
the ideal abstraction domain and widening operator for depth-bounded pro-
cesses that we described in Sec. 3.7.3. The representation of ideals used in the
implementation more closely resembles the communication graphs with nested
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transition "new client"
pre (e, env) -> (s, server) [S]
post (e, env) -> (s, server) [S]

(c, client) -> (s, server) [S]
==> e -> e

s -> s
<==

LHS

RHS

(server,0)

(server,0)

(env,0)

S

(env,0) (client,0)

SS

transition "request"
pre (c, client) -> (s, server) [S]
post (c, client) -> (s, server) [S]

(m, msg) -> (s, server) [S]
(m, msg) -> (c, client) [C]

==> s -> s
c -> c

<==

LHSRHS

(server,0)

(server,0)

(client,0)

S

(client,0)

S

(msg,0)

C

S

transition "reply"
pre (m, msg) -> (s, server) [S]

(m, msg) -> (c, _) [C]
post (r, reply) -> (c, _) [C]

node (s, server)
==> s -> s
<== c -> c

LHS

RHS

(_,0)

(_,0)

(msg,0)

C

(server,0)

S

(server,0)(reply,0)

C

transition "receive reply"
pre (r, reply) -> (c, _) [C]
post node (c, _)
==>
<== c -> c

LHS

RHS

(_,0)

(_,0)

(reply,0)

C

Figure 4.8: Transitions as text and image (generated by Picasso)
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Figure 4.9: Initial state, covering set, and Karp&Miller tree (generated by Pi-
casso)
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self?SendPing()

self?Start()

Ping(9.9)
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Ping(10.11)

assume(random())

Ping(12.11)

assume(!(random()))

self!SendPing()

Ping(14.13)

{}

pong!Stop()

(a) Ping(self, ping)

Pong_start

Pong(20.35)

self?Ping(sender)

Pong(21.29)

self?Stop()sender!Pong() {}

(b) Pong(self)

Figure 4.10: CFAs for Ping and Pong (generated by Picasso)
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LHS

RHS

(Main_start,0)
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(name,0)
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LHS
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ping
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pong
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Figure 4.11: Translation of statements into rewrite rules (generated by Picasso)
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Figure 4.12: Karp&Miller tree for Example 6 (generated by Picasso)
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repeated substructures described in Sec. 3.2. This representation admits process
nodes in communication graphs with arbitrarily many outgoing edges. Such
nodes correspond to process identifiers in π-calculus process terms with un-
bounded (but unordered) parameter lists. To represent the limit elements we
annotate the nodes in the graph with natural numbers indicating the nesting
depth of the nodes. Testing the ordering on states is done by computing mor-
phisms between the corresponding graphs. The morphisms take into account
the nesting structure by allowing mappings to nodes of higher nesting depth to
be non-injective. The actual test is encoded into a set of Boolean constraints
and passed to a SAT solver. The morphisms are then reconstructed from the
obtained satisfying assignments. The algorithm constructs a Karp&Miller tree
using a depth-first search. When the tree is extended with a new node, widening
is applied to the chains on the path to the root of the tree that contain the new
node. Among the smaller ancestors of a node, not all are used for the widening.
Instead, nodes are selected using an exponential back-off strategy. When the
depth of the constructed tree becomes too large, the algorithm tends to slow
down significantly. For such cases, we have implemented a restart policy. When
a restart occurs, the leaves of the current tree are used as roots to construct
new trees. The restart policy ensures that, for larger examples, the analysis
terminates within reasonable time. The current implementation uses restart
intervals of 5 minutes. The implementation exploits parallelism and makes use
of multiple cores when possible.

We ran our experiments on a machine with two AMD Opteron 2431 pro-
cessors and a total of 12 cores. We found that memory consumption was not
an issue for the analysis of our examples. The examples that we have consid-
ered are depth-bounded processes, which are inspired by Scala programs. These
Scala programs use the Scala actor library [61] for the implementation of dy-
namic process networks. Table 4.1 summarizes the results of our experiments.
The ping-pong example is the “Hello World” of actor programming and is
taken from the tutorial for the Scala actor library. All remaining examples fol-
low a client-server type of communication with an unbounded number of clients.
These examples cover common patterns that arise in message passing programs.
The second and third program are variations of the example presented in Sec-
tion 3.2. In the third program, we added a timeout to the receive operations of
clients. We model the timeout by letting the clients send Timeout messages to
themselves. This pattern is often used in programs based on the Scala actor li-
brary. The genericComputeServer example is the message passing skeleton of a
tutorial for remote actors [10]. The example implements a compute server that
accepts computation tasks from clients and then executes them. The second
version uses actors to model the closures that are sent to the server. This model
is obtained using the usual reduction of high-order π-calculus to the standard π-
calculus. The liftChatLike example is the message-passing skeleton extracted
from a chat application based on the lift web framework [78]. Since our imple-
mentation does not yet support collections, the broadcast pattern that is used
in the original implementation has been changed into a polling pattern. The
round robin k example is a load balancer that routes requests to a pool of k
workers. Increasing the value of k greatly increase the number of interleavings
that the analysis has to consider. With added support for collections, we can
analyze a generic round robin k, which should also reduce the symmetry in the
model.
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Name tree size cov. set size time

ping-pong 17 14 0.6 s
client-server 25 2 1.9 s
client-server-with-TO 184 5 12.8 s
genericComputeServer 57 4 4.6 s
genericComputeServer-fctAsActor 98 8 14.8 s
liftChatLike 1846 21 1830.9 s
round robin 2 830 63 48.8 s
round robin 3 3775 259 737.8 s
round robin 4 22749 1108 26088 s

Table 4.1: Experimental results: the columns indicate the number of nodes in
the Karp&Miller tree, the number of ideals in the covering set, and the running
time.

Our experiments indicate that our analysis produces sufficiently precise ap-
proximations of the covering set to be useful for program verification and pro-
gram understanding. The main bottle neck of our analysis is the explosion
caused by interleavings of the transitions of individual processes. We did not
yet explore techniques such as partial order reduction to tackle this problem.

We also considered concurrent data structure implementations such as
Treiber’s stack and the Michael-Scott queue. Such systems are usually not
depth-bounded due to the linking structure of heap objects. However, they
have natural depth-bounded abstraction that preserve progress guarantees such
as lock-freedom [13], which can be reduced to fair termination. The experimen-
tal results are in Section 5.1.5.

Furthermore, we looked at depth-bounded systems encodings of object-
oriented features like dynamic dispatch within a proof-of-concept Scala com-
piler plug-in (available as part of the sources). The compiler plug-in takes the
parsed and typed abstract syntax tree of a Scala program, identifies actors
with their related method calls, and produces a depth-bounded systems. The
compiler plug-in was developed using Scala 2.9 and does not work on later
version of Scala.

4.6 Related tools

The covering problem for Petri nets and their monotonic extensions is still a
very active subject of research and tools are readily available. Among them
are Mist [52], BFC [72], IIC [74]. Picasso is different from these tool in the
sense that depth-bounded systems have a much larger state space than Petri
nets. This leads to more difficulties in comparing two states (linear in Petri
nets, NP-complete in depth-bounded systems), also acceleration/widening is
more complex as we have seen in Section 3. These facts impact the scalability
of Picasso. On the other hand, we can model systems that do not fit into Petri
nets.

Joshi and König have also studied graph transformation systems that are
well-structured with respect to the graph minor ordering [71]. Our approach
targets a different application domain. We consider rewriting rules with injective
matching. With this semantics graphs rewriting systems are not monotonic
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wrt the graph minor ordering, i.e. not well-structured under the graph minor
ordering. On the other hand, the graph minor ordering is a wqo for arbitrary
graphs, while the subgraph ordering is a wqo only for graphs bounded in the
length of their simple paths. Thus, the two approaches consider orthogonal
classes of WSTS.

Related to the model-checking of π-calculus and actors we find two tools:
SOTER [40] and Petruchio [83].

SOTER is a safety verifier for core Erlang programs, i.e. functional actor
programs. SOTER takes as input a core Erlang program and generate a Petri
net abstraction which is then analysed with BFC. Due to the use of a Petri net
backend, the precision of SOTER is somewhat limited. Unbounded creation of
actors is allowed, but all the actors of one type share the same mailbox.

Petruchio is a tool for the verification of temporal properties of π-calculus
processes. Petruchio reduces a fragment of the π-calculus, actually a fragment
of depth-bounded systems, to Petri nets [81, 82]. Then, model checking is used
to check the Petri net against an LTL specification.

Compared to both tools Picasso is capable of handling a larger class of sys-
tems with more precision at the cost of scalability (SOTER), or the complexity
of the properties verified (Petruchio).
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Chapter 5

Extensions: termination of
depth-bounded systems,
dynamic package interfaces

The decision to compute the covering set rather than trying to solve the simpler
covering problem came about because we expected to extract useful information
from the covering sets. High-level information, like the communication topology
of mobile processes, can be extracted from the covering set and returned as part
of the analysis result. Therefore, even without a clear safety property to check
the analysis returns meaningful information.

From the experimental in Table 4.1, we saw that for many systems the cov-
ering set, or an overapproximation of it, is actually quite small. Even though
we compute an over-approximation of the covering set, the analysis has a very
good precision and returns the exact covering set in many cases. This encour-
aged us to look further into using the covering set to get more informations.
In the next sections we will see how to us the covering set as starting points
of two additional analyses: (1) termination and (2) state-machine-like interface
for groups of interacting objects.

Before going into the details, let us recall some of the properties of the
covering set. First and foremost, the covering set is an inductive invariant which
means that it contains the initial state and is closed under the transition relation.
Therefore, it subsumes all the behaviors of that the system may exhibit. The
number of ideals in the covering set depends on how “monotonic” the systems
is. In Figure 5.1, we show a system and its covering set and in Figure 5.2 we
apply the transitions on the covering set and show the intermediate steps as
in Figure 4.3. In Figure 5.2 the covering set is in the center and the three
transitions each of the with three graphs are around it. For each transition the
unfolding, rewriting, and folding are shown. These nested graphs connected by
partial morphisms are the basic ingredients of the following two extensions. The
example of Figure 5.1 will be explained in more details in Section 5.1.2.
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5.1 Structural Counter Abstraction

Depth-Bounded Systems can model a wide range of concurrent infinite-state sys-
tems including those with dynamic thread creation, dynamically changing com-
munication topology, and complex shared heap structures. In [13] we present
the first method to automatically prove fair termination of depth-bounded sys-
tems. Our method uses a numerical abstraction of the system which we obtain
by systematically augmenting an over-approximation of the system’s reachable
states with a finite set of counters. This numerical abstraction can be ana-
lyzed with existing termination provers. What makes our approach unique is
the way in which it exploits the well-structuredness of the analyzed system.
We have implemented our work in Picasso and used it to automatically prove
liveness properties of complex concurrent systems, including nonblocking algo-
rithms such as Treiber’s stack and several distributed processes. Many of these
examples are beyond the scope of termination analyses that are based on tra-
ditional counter abstractions. In this section, we recall the main result of [13]
and describe in more details the implementation of the method in Picasso.

This section is joint work with Kshitij Bansal, Eric Koskinen, and Thomas
Wies. It was published in TACAS 2013 as “Structural Counter Abstrac-
tion” [13]. The author’s contribution in this part is mostly related to the
implementation. The theory required to understand the method and its im-
plementation is quickly recalled to make the thesis self-contained, but should
not be considered as a contribution. For the details of the methods, we re-
fer the reader to the original publication [13] and the corresponding technical
report [14].

5.1.1 Overview

Depth-bounded systems are also among the most expressive classes of WSTS,
subsuming e.g. Petri nets and their monotonic extensions [82]. They can model
a wide range of concurrent systems including those with dynamic thread cre-
ation, dynamically changing communication topology, and complex shared heap
data structures. Many concurrent systems are depth-bounded. For instance,
Actor-style message-passing systems often fall into this class. Other systems
have natural depth-bounded abstractions that preserve important properties.
For example, consider the lock-free stack due to Treiber [109] (see Figure 5.3),
which uses atomic compare-and-swap instructions to implement nonblocking
stack operations. This algorithm can be abstracted to a depth-bounded system
by ignoring the order of the elements in the stack. This abstraction preserves
the termination/progress behavior of the algorithm. Similar depth-bounded
abstractions can be obtained for a wide variety of concurrent algorithms.

In [13], we presented the first method to automatically prove fair termination
of depth-bounded systems. The method focuses on the notion of weak fairness.
Many liveness properties of practical interest (including progress guarantees:
wait-, lock-, and obstruction-freedom) are reducible to termination under weak
fairness. The problem is difficult; it subsumes the structural termination prob-
lem for transfer nets (i.e. termination for all possible input markings), which is
undecidable [79]. Despite this difficulty, we show that one can build on exist-
ing verification techniques for WSTS to obtain an approximate analysis for this
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problem that is both practical and sufficiently precise to prove fair termination
of complex systems.

Furthermore, the technique also extends to other fairness conditions. For
instance, the implementation of the method in Picasso focus on strong fairness.
In Section 5.1.6, we discuss how weak and strong fairness relate on the example
we considered.

The key insight of [13] is that we can automatically construct a precise nu-
merical abstraction of a depth-bounded system from a precomputed inductive
invariant of the system. In the case of depth-bounded systems this inductive
invariant is an over-approximation of the covering set. The covering set is given
as a finite set of nested graphs, as we saw in Chapter 4. Thus, each nested graph
is a symbolic representation of the (infinite) set of concrete graphs obtained by
unfoldings. We associate a counter with each of the nested subgraphs, tracking
how often it can be unfolded. From these augmented nested graphs we then
compute a numerical transition system that simulates the depth-bounded sys-
tem. This so-called structural counter abstraction can then be analyzed using
existing termination provers. The number and meaning of counters in the nu-
merical abstraction is not fixed a priori but, instead, depends on the structure of
the reachable configuration graphs (described by the inductive invariant). Our
method thus provides a more precise alternative to traditional counter abstrac-
tions [96, 16, 37] for concurrent systems.

The benefit of our approach is that it can utilize existing reachability analy-
ses for depth-bounded systems to obtain the inductive invariant, cf. Chapter 3,
and existing termination analyses for numerical programs [98, 30, 66]. We have
implemented our method in Picasso and applied it to prove liveness proper-
ties of various concurrent systems, including nonblocking algorithms such as
Treiber’s stack, as well as distributed processes. These systems are beyond the
scope of traditional counter abstraction techniques. The numerical abstractions
obtained by our analysis are expressible in terms of transfer nets. However, we
have chosen this encoding to support a more effective analysis using existing
termination provers for integer programs.

Our technique enables the automated verification of liveness properties for
a large class of concurrent infinite-state systems. What makes our approach
unique is the way in which it exploits the monotonicity of the system. Our
algorithmic technique of computing a numerical abstraction from an inductive
invariant, introduced in this paper, promises applications beyond liveness prop-
erties. For instance, the same technique can be used to strengthen an inductive
invariant of a depth-bounded system with numerical constraints, enabling proofs
of complex safety properties.

5.1.2 Motivating Example

Consider Treiber’s stack [109], a non-blocking algorithm, given in the C-like code
in Fig. 5.3. The algorithm implements a stack with a simple linked-list. The
two operations, push and pop use the compare-and-swap (CAS) instruction to
atomically modify a location in memory. CAS(l,v,v’) atomically examines the
value at location l and, if it is equivalent to v, sets l to value v’. In this section,
we will describe how we are able to prove lock-freedom of this algorithm via a
reduction to fair termination of a depth-bounded system.

We can represent Treiber’s stack algorithm as a depth-bounded system, by
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struct node {

struct node *next;

value t data;

};

struct stack {

struct node *Top;

};

struct stack *S;

void push(value t v) {

struct node *t, *x;

x = alloc();

x->data = v;

do { t = S->Top; x->next = t; }

while (!CAS(&S->Top,t,x))

}

void init() {

S = alloc();

S->Top = NULL;

}

value t pop() {

struct node *t, *x;

do {

t = S->Top;

if (t == NULL) return EMPTY;

x = t->next;

} while (!CAS(&S->Top,t,x));

return t->data;

}
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Figure 5.3: Source code of Treiber’s stack [109] and its abstraction as a graph
transformation system.

abstracting over the values and order of the elements in the stack. In the depth-
bounded abstraction of Treiber’s stack, the graphs represent the state of the
heap, i.e., the linked list implementing the stack, and thread objects describing
the local states of all clients currently executing push and pop operations. The
abstraction is obtained from the concrete transition system of Treiber’s stack
by ignoring the values of next pointers connecting the vertices in the linked
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list of the stack. In this abstraction, there may still be unboundedly many
elements in the stack as well as unboundedly many clients operating on the stack.
However, since the list vertices are no longer connected, they can no longer form
simple paths of arbitrary length in the heap graph. This abstraction preserve
terminatino of the original stack but is not adatped to prove other properties
like functional correctness. At this level of abstraction, push and pop become
indistinguishable. Both operations have the same control-flow structure: they
iteratively read the top of the stack and attempt to modify it until the CAS

operation succeeds. The actual modification of the stack is non-deterministic in
both operations.

In Fig. 5.3 we give the graph rewriting system for the depth-bounded ab-
straction of Treiber’s stack. The initial state is a graph consisting of the vertex
spawn, indicating that clients can be spawned, and the stack and its Top element
which is some node. There are five rewrite rules. (i) The Spawn rule replaces a
stack vertex with an identical stack vertex that is connected to a new vertex pc1
representing a client in an initial thread state before the CAS (pc1 refers to its
owning stack via edge S). The dotted line indicates how the left-hand-side of the
rule is replaced by the right-hand-side: the stack vertex on the left is replaced
with the stack vertex on the right. (ii) Spawning may cease when the Nwaps rule
is applied. Here, the spawn vertex is replaced with a nwaps vertex. The effect
is that both the Spawn and Nwaps rules are disabled, but the remaining rules
now become enabled. (iii) In the Prepare rule, a client reads the stack’s Top
pointer and prepares a new element (pointed to by x) to be pushed or popped
onto the stack. There are then two cases that correspond to whether or not the
CAS operation succeeds (depending on whether the local pointer t agrees with
Top). (iv) In the Succeed case, the stack is updated to point to the new element
and the old element is disregarded. This is a generalization that encompasses
both push and pop. (v) Alternatively, the CAS may fail, as given by the Fail
case. The stack is unchanged and the client forgets what it read and retries.

We can prove that Treiber’s stack is lock-free by showing that its depth-
bounded abstraction always terminates modulo a weak fairness constraint. The
fairness constraint is that the Nwaps rule cannot be continuously enabled with-
out being applied, i.e., a fair run of the system will only spawn finitely many
clients. It does not matter whether we allow process spawning only in an initial
phase (as in our model), or at any time.

The key contribution of this paper is a technique that automatically con-
structs a precise numerical abstraction of a depth-bounded system from a given
inductive invariant of the system. We refer to this numerical abstraction as the
structural counter abstraction. The structural counter abstraction then enables
us to prove weakly fair termination of the system. Our approach utilizes ex-
isting reachability analyses for well-structured transition systems to obtain the
inductive invariant, and existing termination analyses for numerical programs
to prove termination of the structural counter abstraction. In the following, we
explain the construction of the counter abstraction for Treiber’s stack.

Nested graphs. Above we saw that graph rewrite rules transform a subcom-
ponent of a concrete graph into another concrete graph. However, we will need
to work with (potentially infinitely many) instances of graph subcomponents. So
we instead work with nested graphs (formal definitions provided in Section 4.3)
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Figure 5.4: Structural counter abstraction for Treiber’s stack. Numerical tran-
sition constraints are omitted for readability. Here the inductive invariant is
given by nested graphs Ĝ1 and Ĝ2.

in which subcomponents are given counters that indicate an upper bound on
how many times they may be duplicated. For Treiber’s stack, consider this
abstract graph on the left hand side:
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The set of concrete graphs represented by this nested graph are those in which
the dotted subcomponents are repeated some number of times but at most as
many times as determined by the associated counter. For instance, the left
dotted subgraph is repeated at most n times. A component may itself contain
nested sub-components. An example of an unfolded concrete graph is given on
the right hand side. Notice that the pc2 vertices occur at different frequencies
per node vertex. Also note that counters always refer to the total number of
copies of their component. This representation can be thought of as a more
precise alternative to counter abstractions [96, 16, 37], in that we associate
counters with nested graph components rather than merely program locations.
We say that a nested graph Ĝ1 is covered by nested graph Ĝ2 if the set of
concrete graphs obtainable from unfoldings of Ĝ2 is contained within the set
of concrete graphs obtainable from unfoldings of Ĝ1. Determining whether Ĝ2

covers Ĝ1 is decidable and, as we will see, helps ensure that the structural
counter abstraction can be effectively computed.

Obtaining the structural counter abstraction. We begin with a nested
graph representation of the inductive invariant. For Treiber’s stack the invariant
is Ĝ1 and Ĝ2 in Fig. 5.4. This invariant (obtained, e.g., via [117]) is a finite
set of nested graphs and is an over-approximation of the reachable states of
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the system. Ĝ1 describes states in which spawning may still occur (indicated

with a spawn vertex) and Ĝ2 describes states in which spawning has ceased
(indicated with a nwaps vertex) and arbitrarily many clients have performed
Prepare, Suceed or Fail.

We begin to construct the structural counter abstraction by associating a
counter variable with each subcomponent of each nested graph in the inductive
invariant. For example in Fig. 5.4, we have established counter variables a, b, c, d
with components of Ĝ1 and additional counter variables e, f, g, h in Ĝ2. In our
generation of the structural counter abstraction, we leverage the fact that the
invariant is closed under rewrite rules. That is, whenever we apply a rewrite
rule to a nested graph Ĝ in the inductive invariant, we obtain Ĥ that is already
covered by some other nested graph Ĝ′ in the invariant.

To construct the abstraction, we apply each rewrite rule, one at a time, for
every possible match in one of the nested graphs in the invariant. For example,
in Fig. 5.4 we can apply the Prepare rule as follows. We first unfold one instance
of the pc1 vertex a in Ĝ2, obtaining a separate pc1 vertex to which we apply
the Prepare rule. This produces a new nested graph Ĥ3 that extends Ĝ2 with a
new subgraph. We add a new counter variable i for this new subgraph in Ĥ3.
Notice that, because the inductive invariant is maximal, Ĥ3 is covered by the
existing graph Ĝ2 (hence the dotted edge from Ĥ3 to Ĝ2). It is covered because

the isomorphic subgraphs with associated counters i and h in Ĥ3 can both be
represented by the subgraph with associated counter h in Ĥ3. From the point of
view of the concrete graph transformation system, we can think of this covering
edge as an ε-transition: every rewrite rule that is susequently applied to Ĥ3

can also be applied to Ĝ2. The structural counter abstraction is a numerical
transition system that reflects the corresponding changes to the counter values
when rewrite and covering edges between nested graphs are taken. There are
several other possible instances where rules can be applied to this inductive
invariant. (These involve graphs Ĥ4, Ĥ5, Ĥ6, and Ĥ7 which have been omitted

for lack of space.) For example, one can apply the Spawn rule in Ĝ1 and obtain

Ĥ4 which has two pc1 subgraphs. This new graph Ĥ4 is, again, covered by Ĝ1

and the two pc1 subgraphs can be merged into the pc1 subgraph in Ĝ1.

Structural counter abstraction. The structural counter abstraction is rep-
resented as a simple control-flow graph program N = (Locs, s0,Vars,∆). Here,
Locs refers to the control locations. There is one location per nested graph in
the inductive invariant, respectively, per nested graph obtained by application
of a rewriting rule. The variables Vars are the structural counters in the nested
graphs, and ∆ is a set of commands that change the counter values according
to the rewriting and covering steps. s0 is the initial state. An excerpt of the
structural counter abstraction for Treiber’s stack that captures parts of Fig. 5.4
is as follows:

N ≡ ({`1, `2, `3, `4, `5, `6, `7}, s0, {a, b, c, . . . }, {(`2, δ23, `3), (`3, δ32, `2), ...}) where

s0 ≡ (`1, {b 7→ 1, c 7→ 1, d 7→ 1, 7→ 0})
δ23 ≡ a′ = a− 1 ∧ i′ = i+ 1 ∧ Id|{a,i} δ32 ≡ h′ = h+ i ∧ i′ = 0 ∧ Id|{h,i}

Id|S is the identity mapping on the variables, excluding those in S. The tran-

sition constraint δ23 captures the application of the Prepare rule on Ĝ2 yielding
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Ĥ3. The transition constraint δ32 captures the covering transition from Ĥ3 back
to Ĝ2. The initial state s0 encodes the initial graph of the system which con-
sists of one spawn, one stack, and one node vertex. The fairness constraints
on the original system can be translated to fairness constraints on the struc-
tural counter abstraction in a straightforward manner. The structural counter
abstraction we produce is then fit to be analyzed by an existing termination
analysis tool such as Terminator [30] or ARMC [98].

Prototype. In Section 5.1.5 we describe the implementation in Picasso that
automates all steps required to prove fair termination of depth-bounded systems:
generation of the inductive invariant, construction of the structural counter
abstraction, and the final termination proof. It is able to prove fair termination
of the Treiber stack model in less than 10 seconds. A simple counter abstraction
that distinguishes only between processes at different control locations would
yield a system with fair infinite traces. It is crucial to distinguish between the
processes at location pc2 that may still succeed and those that are bound to
fail. This is achieved by our more fine-grained structural counter abstraction.

5.1.3 Weakly Fair Termination of Depth-Bounded Sys-
tems

In this section, we formally define the class of systems that we consider in this
paper and the type of questions that we answer about these systems.

Let T = (S, s0,Act ,−→) be a labeled transition system. A finite trace
π of T is a sequence s0 a0 s1 a1 . . . an−1 sn, with si ∈ S and ai ∈ Act such

that si
ai−→ si+1, for all 0 ≤ i < n; we define infinite traces s0 a0 s1 a1 . . .

correspondingly. We say that an action a ∈ Act is enabled in a state s, if there
exists a state s′ such that s

a−→ s′. Let F = {A0, . . . , Am} be a set of subsets
of Act . An infinite trace s0 a0 s1 a1 . . . is weakly fair with respect to F if for
every Aj , 0 ≤ j ≤ m, there are infinitely many i such that ai ∈ Aj or there are
infinitely many i such that no action in Aj is enabled in si.

Definition 15 Given a transition system T and a finite set F of sets of actions
of T , the weakly fair non-termination problem asks whether there exists an
infinite trace π of T such that π is weakly fair with respect to F . We refer to
the complementary problem as the weakly fair termination problem (WFT).

Theorem 10 ([13]) Weakly fair termination is undecidable for depth-bounded
systems.

5.1.4 Structural Counter Abstraction

We now see the formal treatment of how one obtains the structural abstraction
of a given depth-bounded system and how it is used to give approximate an-
swers to the weakly fair termination problem. For the remainder of this section,
let R be a depth-bounded system. We systematically construct the structural
counter abstraction of R from an inductive invariant of R. However, we are
not interested in arbitrary inductive invariants but in those that are downward-
closed with respect to graph embedding. Since graph embedding is a wqo on
depth-bounded graphs, such downward-closed sets are finite unions of ideals of
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the embedding order, see Chapter 4. Each ideal can itself be finitely represented
and we can compute symbolically the effect of transition on this representation.
This enables us to compute a form of closure on the inductive invariant that
yields the structural counter abstraction. We start by formalizing this represen-
tation of ideals.

Constructing the structural counter abstraction. In the following, we
assume that Î is a finite set of nested graphs such that γ(Î) is a downward-

closed inductive invariant ofR. From Î we then construct the structural counter
abstraction. The precision of this abstraction depends on the precision of Î.
The most precise downward-closed inductive invariant of R is the covering set
Cover(T (R)). Unfortunately, this set is in general not computable for depth-
bounded systems1. Thus, we employ existing the method from Chapter 3 that
compute downward-closed inductive approximations of the covering set. In prac-
tice, these algorithms often yield precisely Cover(T (R)). This is confirmed by
our experiments in Section 5.1.5.

Let G0 be the initial graph of R and let Ĝ0 be the nested graph obtained
by equipping G0 with a nesting level function mapping all nodes to 0. Further,
let R be the set of rewriting rules of R. We define a set of rewriting edges

ER as follows: ER =
{

(Ĝ, r, Ĥ) | Ĝ ∈ Î, r ∈ R, Ĥ ∈ Ĝ, Ĝ r̂−→ Ĥ
}

. That is,

ER describes the set of one step rule applications on the nested graphs in the
inductive invariant. The set ER is finite up to isomorphism of nested graphs.

Next, define the set Ĵ =
{
Ĝ0

}
∪
{
Ĥ | (Ĝ, r, Ĥ) ∈ ER

}
. From the fact that Î

is an inductive invariant it follows that, for all Ĥ ∈ Ĵ there exists Ĝ ∈ Î such
that Ĥ v Ĝ. Fix one such Ĝ for each Ĥ ∈ Ĵ and let EC be the set of all pairs
(Ĥ, Ĝ). We call the elements of EC covering edges. Let E = ER ∪ EC . In Fig
5.4, we saw this construction for the example of Treiber’s stack starting with
an inductive invariant. The solid edges between nested graphs correspond to
rewrite edges and the dashed ones to covering edges. At the end of Section 5.1.2,
we also saw an excerpt of the counter abstraction, next we describe how this is
done in general.

The abstraction is a tuple N = (Locs, s0,Vars,∆) where

Locs =
{
`Ĝ | Ĝ ∈ Î ∪ J

}
is a set of control locations, Vars ={

xv | v ∈ V (Ĝ), Ĝ ∈ I ∪ J
}

is a set of counter variables , one for each

vertex of a nested graph in I ∪ J , and ∆ = { δe | e ∈ E } is a set of commands,

one for each edge in E . The command δe associated with an edge e = (Ĝ, Ĥ)
is of the form (`Ĝ, ρe, `Ĥ) where ρe is a transition constraint over primed
and unprimed versions of the variables in Vars. The initial state of N is
s0 = (`

Ĝ0
, η0) where η0 is a function mapping counters to natural numbers and

defined as η0(xv) = 1 if v ∈ V (Ĝ0), and 0 otherwise. Further, let σR : ∆ ⇀ R
be a partial mapping defined as σR(δe) = r if e is a rewriting edge for rule r.

The definition of the transition constraint δe for an edge e ∈ E depends on
whether e is a rewriting or a covering edge. We first consider the case that e is
a rewriting edge (Ĝ, r, Ĥ). In order to perform a rewrite (which only transforms

level-0 vertices) we need to unfold the graph Ĝ. As mentioned in Lemma 16,

1This follows from the undecidability of place-boundedness of transfer nets [41].
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this can be done efficiently giving us Ĝ  ∗ K. Each unfolding step gives a
homomorphism, which can be composed together to give h : K → Ĝ. Further,
from the pushout we get a partial homomorphism r′ : K ⇀ Ĥ. Let V be the
vertices of Ĝ, U the vertices of K, and W the vertices of Ĥ. Further, let U0

be the level-0 vertices of K and define U0 = U \ U0. Similarly, let W0 be the

level-0 vertices of Ĥ. Then, the transition constraint ρe for e is given by the
conjunction of the following constraints:

xv =
∑

u∈h−1(v)∩U0

x′r′(u) +
∣∣h−1(v) ∩ U0

∣∣ , for all v ∈ V (5.1)

x′w = 1, for all w ∈W0 (5.2)

y′ = 0, for all y ∈ Vars\ {xw | w ∈W } (5.3)

During unfolding of Ĝ to Ĥ, if some vertex v with count xv is duplicated,
then constraint (5.1) ensures that all counts for the duplicates sum up to xv.
Level-0 vertices get a special treatment, since they may be transformed by the
rewrite rule. Similarly, (5.2) takes care of level-0 vertices in the rewritten graph.
The constraint (5.3) encodes that only counters of vertices associated with the

successor location have non-zero values. For covering edges e = (Ĥ, Ĝ), we use

the inclusion mapping ĥ : Ĥ → Ĝ between the two nested graphs to define the
transition constraint δe. Let W be the vertices of Ĝ, W0 the level-0 vertices
of Ĝ, and V the vertices of Ĥ. The inclusion mapping encodes which vertices
v ∈ V are collapsed to a single vertex w ∈W , yielding the constraint

x′w =
∑

v∈ĥ−1(w)

xv, for all w ∈W (5.4)

Then δe is the conjunction of constraint (5.4) and constraints (5.2) and (5.3),
which are the same as in the case of a rewriting edge.

Finally, the fairness constraints FR of R can be translated to fairness
constraints FN of N using the partial function σR as follows: FN ={
σ−1
R (Ri) | Ri ∈ FR

}
.

The numerical abstraction induces a transition system T (N ) = (S, s0,∆,
∆−→

) with states S = Locs×NVars , i.e., a program location along with an evaluation

of the counters. The transition relation
∆−→ is as expected. The details of the

following soundness theorem may be found in [13].

Theorem 11 (Soundness [13]) If (T (R),FR) has a weakly fair infinite
trace, then so does (T (N ),FN ).

5.1.5 Evaluation

We implemented a prototype of our algorithm as an extension to the Pi-
casso [117, 116] tool. Picasso takes as input a depth-bounded systems and
computes a so called abstract coverability tree (ACT). The nodes of the ACT are
nested graphs and its construction is similar to the Karp-Miller tree for Petri
nets. The maximal nodes in the ACT form a downward-closed inductive invari-
ant, Î, of the input system. From this invariant we generate a structural counter
abstraction, N , that is optimized and then analyzed with the ARMC [98] ter-
mination prover.
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A naive implementation of the method described in Section 5.1.4 produced
structural counter abstractions that were too big for current termination provers.
For instance, for Treiber’s stack, having one variable for each vertex of each
nested graph in the inductive invariant and those obtained by applying rewrite
rules led to an abstraction with over 170 variables and 40 transitions. We there-
fore optimized the generation of the abstraction to get a smaller counter program
with the same termination properties. When we generate the constraints for a
transition, we decompose the transition into three steps: unfolding, morphism,
and covering. These steps lead to many intermediate locations and transitions.
We eliminate the intermediate steps by using the quantifier elimination proce-
dure for linear integer arithmetic in Princess [104]. We collect the constraints
generated for each step and quantify away the variables at the intermediate
locations. The resulting constraint describes a single transition with the same
source and target locations as the original three-step transition, using only the
variables at those locations. Furthermore, we observed that in many places con-
stant values are assigned to the variables because they represent nodes on nesting
level 0. We propagate the constant values using a combination of lightweight
abstract interpretation and constraint propagation. We use an abstract domain
that maps the variables to N∪⊥. A variable v is mapped to a value n in N when
we can deduce that v is always equal to n, otherwise v is mapped to ⊥.From the
abstract fixed point we extract variable/value pairs and eliminate the variables
by replacing them with their associated values. Lastly, instead of using one vari-
able per node and graph, we reuse the variables across different graphs. The
renaming is done by finding a minimal coloring of a graph where the nodes are
variables and there is an edge between two nodes if the corresponding variables
are used at the same location.For Treiber’s stack, we reduced the abstraction to
6 variables and 4 transitions.

Transition predicates. We observed that ARMC finds easily the predicates
that involve one or two variables, but not the predicates requiring more vari-
ables. Fortunately, ARMC can take transition predicates as part of its input.
We manually give hints to Picasso in the form of variables names, usually
corresponding to control-states. Those names are turned into transition predi-
cates by summing the variables. For example, in the numerical abstraction of
Treiber’s stack we specified a simple predicate indicating that the sum of all
the process counters was either unchanged or decreasing. We also implemented
an heuristic that looks at a small number of cycles in the control flow graph
of the abstraction and look for decreasing groups of variables by querying an
SMT-solver. Then the corresponding transition predicates are generated. As
the number of elementary cycles grows quickly with the size of the system, it is
sometimes helpful to manually give hints about the predicates.

Results. Table 5.1 summarizes the results of our experiments. Our implemen-
tation is parallelized and ran on a server using 26 cores. Memory consumption
was not an issue. We examined a collection of depth-bounded transition sys-
tems, including distributed processes and concurrent algorithms. The examples
and the tool can be downloaded from the Picasso web site [116]. We applied
our method to prove global progress properties of those systems. Fairness is used
to limit the number of clients, requests, and failures. Details about the encoding
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Example #loc #v #t Î N ArmcTotal

Split/merge 4 3 9 1.5 6.8 0.1 8.4
Work stealing, 3 processors 4 4 20 1.7 13.1 0.2 15.0
Work stealing, parameterized 2 3 4 1.5 5.6 0.1 6.2
Compute server job queue 2 5 4 1.6 6.1 0.1 7.8
Chat room 5 34 80 9.8 61.3 5 min 6 min
Map reduce 6 10 15 2.0 8.8 0.2 11.0
Map reduce with failure 6 15 21 2.3 11.1 0.9 14.3
Treiber’s stack (coarse-grained) 2 6 4 1.9 7.2 0.2 9.3
Treiber’s stack (fine-grained) 3 14 13 2.7 14.2 1.2 17.1
Herlihy/Wing queue 3 16 25 3.8 24.9 6.5 34.2
Michael/Scott queue (dequeue only) 4 7 23 2.8 13.0 0.6 16.4
Michael/Scott queue (enqueue only) 7 15 53 3.8 43.7 7.6 55.1
Michael/Scott queue 9 31 224 25.0 265.0 3 wks 3 wks

Table 5.1: Experimental results. The columns show the number of locations,
variables, and transitions in the counter abstraction, and the running times, in
seconds, for computing the inductive invariant, constructing the abstraction,
and for proving termination.

of fairness constraints can be found in Section 5.1.6. Our experiments show that
our approach can quickly prove termination of complex systems. The structural
counter abstraction is concise and maintains the necessary information in order
to prove termination.

The split/merge example is a parallel computation where a master sends
jobs to a pool of workers. We also proved termination of (non-)parameterized
versions of a work stealing algorithm. From [62] we considered systems ob-
tained from Scala implementations of a chat room and a map reduce algorithm
(with and without failure). The chat room example shows the interaction of
an unbounded number of clients, each one posting an arbitrary number of mes-
sages. For the map reduce examples, one version models failures and the other
does not. the first version do not consider failures. In the second version, both
mappers and reducers may crash after which they get recreated. To ensure ter-
mination, we added the constraint that processes cannot crash infinitely often
without succeeding infinitely often. As shared memory examples, we considered
the model of Treiber’s stack [109] described in Section 5.1.2 as well as a more
fine-grained variant with push and pop modeled independently. We analyzed a
model of the Herlihy/Wing concurrent queue [64] which requires an additional
fairness constraint to ensure that dequeue operations cannot execute without
enqueue operations ever taking steps. This is needed because the dequeue op-
eration retries if the queue is empty. With this additional fairness constraint
we can also prove termination of this example. Finally, we also considered the
Michael/Scott queue [84] where the order between the elements is abstracted.
This example results in an abstraction that is very large for today’s termination
provers. We therefore also show the results for simpler models where enqueue
and dequeue operations are considered in isolation.
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5.1.6 Fairness constraints in Picasso

Strong fairness. Picasso and ARMC do not directly support weak-fairness.
However, we can encode strong fairness constraints in the structural counter
abstraction with fairness counters. These counters are either decremented by
one or incremented by an arbitrary finite amount in the relevant transitions.
For example, let t1 and t2 be two transitions and (t1, t2) a Streett fairness
condition. The Streett condition tell us that if t1 occurs infinitely often, then
t2 must also occur infinitely often. This can be encoded in the following way.
Let v a fresh variable in the structural counter abstraction. In t1 we add the
constraint v′ = v − 1 and in t2 we add v′ ≥ 0. This principle generalizes to
Rabin and (co-)Büchi fairness conditions.

Furthermore, we have extended Picasso to support such fairness con-
straints, expressed in the input graph rewriting rules. The graph rewriting
operation corresponding v′ ≥ 0 cannot be expressed by the formalism presented
in Section ??. For this purpose we extend the graph rewriting rules to allow
nodes of non-zero nesting level on the right-hand-side of rewriting rules. This
single modification in the parser was enough to express strong fairness con-
straints.

When weak and strong fairness meet. The main difference between strong
an weak fairness is that in addition to transition firing, weak fairness also con-
siders whether a transition is enabled. This cannot currently be expressed in
Picasso. Fortunately, the weak-fairness condition that we use are also express-
ible as strong fairness condition. The key insight is that we can statically know
when a transition is enabled. For instance, the transition that spawns client is
always enabled until the “Spawn to Nwaps” transition fires. We can rephrase
this condition as a co-Büchi condition saying that the spawning of client does
not occur infinitely often. For the experimental evaluation we use the co-Büchi
condition.

5.1.7 Related Work

We present breifly other works related to the structural counter abstraction. A
more thorough comparison with existing literature is available in [13].

DBS were first introduced by Meyer in [80] as a fragment of the π-calculus.
In his paper, he showed that DBS are well-structured and that termination
(without fairness constraints) is decidable. Termination without fairness has
only limited practical applications because the initial state of the system is
fixed. With a fixed initial state one cannot model systems with an infinite set
of reachable states without losing termination, since we only consider finitely
branching systems.

Numerical abstractions for the analysis of concurrent systems have been
previously explored e.g. in [96, 16, 37]. Our work is a more precise alternative
to these approaches. Rather than using a fixed number of counters (one for each
program location) that count how many threads are at each program location
in a given state, we use a reachability analysis to introduce counters that also
take into account data dependencies between individual threads.

The idea of using reachability analyses to obtain numerical abstractions of
programs whose states can be described by graphs is by itself not new. In
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particular, such techniques have been studied for proving safety and liveness
properties of heap manipulating programs [19, 99, 60]. Our technique differs
substantially from these approaches in the way the numerical abstraction is
computed. Specifically, our technique is based on ideal abstractions [117] for
computing over-approximations of the covering sets of WSTS and it exploits
the monotonicity of the analyzed system. Finally, the abstract domain of nested
graphs can model unbounded recursive unfolding structures that are difficult to
capture using traditional shape analysis domains.

An application of our results is proving nonblocking properties of concurrent
algorithms. Others have considered approaches directly targeted on this goal.
Gotsman et al. [57] describe a thread-modular proof technique.
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5.2 Dynamic Package Interfaces

Programmers using software components have to follow protocols that specify
when it is legal to call particular methods with particular arguments. For exam-
ple, one cannot use an iterator over a set once the set has been changed directly
or through another iterator. We generalize the notion of state-machine inter-
faces for single objects to group of interacting objects and formalize it in what
we call dynamic package interfaces (DPI). We also give an methods to statically
compute a sound abstraction of a DPI. States of a DPI represent (unbounded)
sets of heap configurations and edges represent the effects of method calls on
the heap. We introduce a novel heap abstract domain based on depth-bounded
systems to deal with potentially unboundedly many objects and their relations.
We have implemented our algorithm and show that it is effective in comput-
ing representations of common patterns of package usage, such as relationships
between viewer and label, container and iterator, and JDBC statements and
cursors.

This part is joint work with Shahram Esmaeilsabzali, Rupak Majumdar, and
Thomas Wies. It is still work in progress and has not yet been published.

5.2.1 Motivation

Modern object-oriented programming practice uses packages to encapsulate
components, allowing programmers to use these packages through well-defined
application programming interfaces (APIs). While programming languages such
as Java or C# provide a clear specification of the static APIs of components
in terms of classes and their (typed) methods, there is usually no specification
of the dynamic behavior of packages that constrain the temporal ordering of
method calls on different objects. For example, one should invoke the lock and
unlock methods of a lock object in alternation; any other sequence raises an
exception. More complex constraints connect method calls on objects of differ-
ent classes. For example, in the Java Database Connectivity (JDBC) package,
a ResultSet object, which contains the result of a database query executed by
a Statement object, should first be closed before its corresponding Statement
object can execute a new query.

In practice, such temporal constraints are not formally specified, but ex-
plained through informal documentation and examples, leaving programmers
susceptible to bugs in the usage of APIs. Being able to specify dynamic inter-
faces for components that capture these temporal constraints clarify constraints
imposed by the pacakge on client code. Moreover, program analysis tools may
be able to automatically check whether the client code invokes the component
correctly according to such an interface.

Previous work on mining dynamic interfaces through static and dynamic
techniques has mostly focused on the single-object case (such as a lock ob-
ject) [111, 7, 77, 63, 56], and rarely on more complex collaborations between
several different classes (such as JDBC clients) interacting through the heap
[102, 91, 100]. In this paper, we propose a systematic, static approach for ex-
traction of dynamic interfaces from existing object-oriented code. Our work is
closely related to the Canvas project [102]. Our new formalization can express
structures than could not be expressed in previous work (i.e. nesting of graphs).
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More precisely, we work with packages, which are sets of classes. A config-
uration of a package is a concrete heap containing objects from the package as
well as references among them. A dynamic package interface (DPI) specifies,
given a history of constructor and method calls on objects in the package, and
a new method call, if the method call can be executed by the package without
causing an error. In analogy with the single-object case, we are interested in
representations of DPIs as finite state machines, where states represent sets of
heap configurations and transitions capture the effect of a method call on a
configuration. Then, a method call that can take the interface to a state con-
taining erroneous configurations is not allowed by the interface, but any other
call sequence is allowed.

The first stumbling block in carrying out this analogy is that the number of
states of an object, that is, the number of possible valuations of its attributes,
as well as the number of objects living in the heap, can both be unbounded.
As in previous work [63, 102], we can bound the state space of a single object
using predicate abstraction, that tracks the abstract state of the object defined
by a set of logical formulas over its attributes. However, we must still consider
unboundedly many objects on the heap and their inter-relationships. Thus, in
order to compute a dynamic interface, we must address the following challenges.

1. The first challenge is to define a finite representation for possibly un-
bounded heap configurations and the effect of method calls. For single-
object interfaces, states represent a subset of finitely-many attribute valu-
ations, and transitions are labeled with method names. For packages, we
have to augment this representation for two reasons. First, the number
of objects can grow unboundedly, for example, through repeated calls to
constructors, and we need an abstraction to represent unbounded families
of configurations. Second, the effect of a method call may be different
depending on the receiver object and the arguments, and it may update
not only the receiver and other objects transitively reachable from it, but
also other objects that can reach these objects.

2. The second challenge is to compute, in finite time, a dynamic interface
using the preceding representation. For single-object interfaces [7, 63],
interface construction roughly reduces to abstract reachability analysis
against the most general client (a program that non-deterministically calls
all available methods in a loop). For packages, it is not immediate that
abstract reachability analysis will terminate, as our abstract domains will
be infinite, in general.

We address these challenges as follows. First, we describe a novel shape do-
main for finitely representing infinite sets of heap configurations as recursive
unfoldings of nested graphs. Technically, our shape domain combines predicate
abstraction [105, 97], for abstracting the internal state of objects, with sets of
depth-bounded graphs represented as nested graphs, cf. Chapter 4. Each node
of a nested graph is labelled with a valuation of the abstraction predicates that
determine an equivalence class for objects of a certain class.

Second, we describe an algorithm to extract the DPI from this finite state ab-
straction based on abstract reachability analysis of depth-bounded graph rewrit-
ing systems. We use the insight that the finite state abstraction can be reinter-
preted as a numerical program is a way resembling to the counter abstraction of

99



Section 5.1. The analysis of this numerical program yields detailed information
about how a method affects the state of objects when it is called on a concrete
heap configuration, and how many objects are effected by the call.

We have implemented our algorithm on top of Picasso and we have applied
our method on a set of standard benchmarks written in a Java-like OO language,
such as container-iterator, JDBC query interfaces, etc. In each case, we show
that our algorithm produces an intuitive DPI for the package within a few
seconds. This DPI can be used by a model checking tool to check conformance
of a client program using the package to the dynamic protocol expected by the
package.

5.2.2 Overview

We illustrate our approach through a simple example.

Example. Figure 5.5 shows two classes Viewer and Label in a package, adapted
from [91], and inspired by an example from Eclipse’s ContentViewer and IBase-
LabelProvider classes. A Label object throws an exception if its run or dispose
method is called after the dispose method has been called on it. There are dif-
ferent ways that this exception can be raised. For example, if a Viewer object
sets its f reference to the same Label object twice, after the second call to set,
the Label object, which is already disposed, raises an exception. As another ex-
ample, for two Viewer objects that have their f reference attributes point to the
same Label object, when one of the objects calls its done method, if the other
object calls its done method an exception will be raised. An interface for this
package should provide possible configurations of the heap when an arbitrary
client uses the package, and describe all usage scenarios of the public methods
of the package that do not raise an exception.

Dynamic Package Interface. Intuitively, an interface for a package sum-
marizes all possible ways for a client to make calls into the package (i.e., create
instances of classes in the package and call their public methods). In the case of
single-objects, where all attributes are scalar-valued, interfaces are represented
as finite-state machines with transitions labeled with method calls [111, 7, 63].
Each state s of the machine represents a set [[s]] of states of the object, where a
state is a valuation to all the attributes. (In case there are infinitely many states,
the methods of [7, 63] abstract the object relative to a finite set of predicates,
so that the number of states is finite.) An edge s

m−→t indicates that calling the
method m() from any state in [[s]] takes the object to a state in [[t]]. Some states
of the machine are marked as errors: these represent inconsistent states, and
method calls leading to error states are disallowed.

Below, we generalize such state machines to packages.

States: Ideals over Shapes. The first challenge is that the notion of a state
is more complex now. First, there are arbitrarily many states: for each n, we
can have a state with n instances of Label (e.g., when a client allocates n objects
of class Label); moreover, we can have more complex configurations where there
are arbitrarily many viewers, each referring to a single Label, where the Label
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class Viewer {

Label f;

public void Viewer() {

f := null; }

public void run() {

if (f != null) f.run(); }

public void done() {

if (f != null) f.dispose(); }

public void set(Label l){

if (f != null) f.dispose();

f := l; }

}

(a) The Viewer class

class Label {

boolean disposed;

public void Label() {

disposed := false;

}

protected void run() {

if (disposed) throw new Exception(); }

protected void dispose() {

if (disposed) throw new Exception();

disposed := true; }

}

(b) The Label class
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(c) Abstract heap H0
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(d) Abstract heap HErr

Figure 5.5: A package consisting of Viewer and Label classes and its two abstract
heaps

may have disposed = true or not. We call sets of (potentially unbounded) heap
configurations abstract heaps.

Our first contribution is a novel finite representation for abstract heaps. We
represent abstract heaps using a combination of parametric shape analysis [105]
and ideal abstractions for depth-bounded systems. As in shape analysis, we fix
a set of unary predicates, and abstract each object w.r.t. these predicates. For
example, we track the predicate disposed(l) to check if an object l of type
Label has disposed set to true. Additionally, we track references between objects
by representing the heap as a nested graph whose nodes represent predicate
abstractions of objects and whose edges represent references from one object to
another. Unlike in parametric shape analysis, references are always determinate
and the abstract domain is therefore still infinite.

Figure 5.5c shows an abstract heap H0 for our example. There are five nodes
in the abstract heap. Each node is labelled with the name of its corresponding
class and a valuation of predicates, and represents an object of the specified
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class whose state satisfies the predicates. Some nodes have an identifier in
square brackets in order to easily refer to them. For instance, Vnd represents a
Viewer object and Ld represents a Label object for which disposed is true. Edges
between nodes show field references: the edge between the Vd and Ld objects
that is labeled with f shows that objects of type Vd have an f field referring
to some object of type Ld. Finally, nodes and subgraphs can be marked with a
“*”. Intuitively, the “*” indicates an arbitrary number of copies of the pattern
within the scope of the “*”. For example, since Vd is starred, it represents
arbitrarily many (including zero) Viewer objects sharing a Label object of type
Ld. Similarly, since the subgraph over nodes Vd and Ld is starred, it represents
configurations with arbitrarily many Label objects, each with (since Vd is starred
as well) arbitrarily many viewers associated with it.

Figure 5.5d shows a second abstract heap Herr. This one has two extra
nodes in addition to the nodes in H0, and represents erroneous configurations
in which the Label object is about to throw an exception in one of its methods.
(We set a special error-bit whenever an exception is raised, and the node with
object type Lerr represents an object where that bit is set.)

Technically (see Sections 5.2.9 and 5.2.9), nested graphs represent ideals of
downward-closed sets (relative to graph embedding) of configurations of depth-
bounded predicate abstractions of the heap. While the abstract state space is
infinite, it is well-structured structured, and we can compute the covering set,
c.f. Chapter 3.

Transitions: Object Mappings. Suppose we get a finite set S of abstract
heaps represented as above. The second challenge is that method calls may have
parameters and may change the state of the receiver object as well as objects
reachable from it or even objects that can reach the receiver. As an example,
consider a set container object with some iterators pointing to it. Removing an
element through an iterator can change the state of the iterator (it may reach
the end), the set (it can become empty), as well as other iterators associated
with the set (they become invalidated and may not be used to traverse the set).
Thus, transitions cannot simply be labeled with method names, but must also
indicate which abstract objects participate in the call as well as the effect of the
call on the abstract objects. The interface must describe the effect of the heap
in all cases, and all methods. In our example, we can enumerate 14 possible
transitions from H0. To complete the description of an interface, we have to (1)
show how a method call transforms the abstract heap, and (2) ensure that each
possible method call from each abstract heap in S ends up in an abstract heap
also in S.

Consider invoking the set method of a viewer in the abstract heap H0. There
are several choices: one can choose in Figure 5.5c an object of type Vd, Vnd, or
V0 as the callee, and pass it an object of type Ld or Lnd. Note that the method
call captures the scenario in which one representative object is chosen from each
node and the method is executed. Recall that, because of stars, a single node
may represent multiple objects. Figure 5.6a shows how the abstract heap is
transformed if we choose a viewer pointing to a label which is not disposed as
the callee and pass it a disposed label as argument. The box on the left specifies
the source heap before the method call and the box on the right specifies the
destination heap after the method call. A representative object in a method
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Figure 5.6: Two object mappings for the package in Figure 5.5

call is graphically shown by a rounded box and has a role name that prefixes
its object type. The source heap includes three representative objects with role
names: callee, arg0, and scope0. The callee and arg0 role names determine
the callee object and the parameter object of the method call, respectively. The
scope0 is a Label object that is in the scope of the method call: i.e., the method
call affects its type or the valuation of its predicates. Lastly, there is a fourth
object in the left box that is not a single representative, but a starred object
V∗ that represents all viewers other than the callee object that reference the
object with role scope0. The following properties hold: first, both the source
and the destination of the transition are H0, hence, the method call transforms
objects in the abstract heap H0 back to H0; second, any object in H0 that is not
mentioned in the source box is untouched by the method call. Third, each object
in the left box is mapped to another representative object in the right box: The
representative objects can be traced via their role names while the other objects
via the arrows that specifies their new types (to model non-determinism, such
an arrow can be a multi-destination arrow). Thus, V.set(La) transforms the
callee object by changing its reference f to the La object that was the parameter
of the method call. The object L that the callee referenced before the method
call get the value of its disposed predicate changed to true after the method
call. All other objects represented by V∗ that reference L continue referencing
that object.

The second transition, in Figure 5.6b, shows what happens if set is called
on Vd with any label. This time, an error occurs, since the method call tries to
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dispose an already disposed label. This is indicated by a transformation to the
error node Herr, and thus, is not allowed in the interface.

Algorithm for Interface Computation. Our second contribution is an al-
gorithm and a tool for computing the dynamic package interfaces in form of
a state machine, as described above. Conceptually, the DPI of a package is
computed in two steps: (i) computing the covering set of the package, which
includes all possible configurations of the package, in a finite form; and (ii)
computing the object mappings of the package using the covering set.

Computing the Covering Set. We introduce three layers of abstraction to
obtain an overapproximation of the covering set of a package in a finite form.
First, using a fixed set of predicates over the attributes of classes, we introduce a
predicate abstraction layer. Second, we remove from this predicate abstraction
those reference attributes of classes that can create a chain of objects with an
unbounded length; these essentially correspond to recursive data structures,
such as linked lists. We call these two abstraction layers the depth-bounded
abstraction. The soundness of depth-bounded abstraction follows soundness
arguments similar to the ones for classic abstract interpretation. However, unlike
the classic abstract interpretation of non-object–oriented programs, the depth-
bounded abstraction of object-oriented packages does not in general result in a
finite representation; e.g., we may still have an unbounded number of iterator
and set objects, with each iterator object being connected to exactly one set
object.

Our third abstraction layer, namely, ideal abstraction, ensures a finite rep-
resentation of the covering set of a package. The domain of ideal abstraction
is essentially the same as the domain of nested graphs. The key property of
this abstraction layer is that it can represent an unbounded number of depth-
bounded objects as the union of a finite set of ideals, each of which itself is
represented finitely. The soundness of this abstraction layer follows from the
general soundness result for the ideal abstraction of depth-bounded systems.

To compute the covering set of a package, we use a notion of most general
client. Intuitively, the most general client [63] runs in an infinite loop; in each
iteration of the loop, it non-deterministically either allocates a new object, or
picks an already allocated object, a public method of the object, a sequence of
arguments to the method, and invokes the method call on the object.

Computing the Object Mappings. The object mappings are computed
using the covering set as starting point. To compute the object mappings we
let the most general client run one more time using the covering set as starting
state of the system. During that run we record what effect the transitions
have. For a particular transition we record, among other information, what
are the starting and ending abstract heaps and the corresponding unfolded,
representative objects. The nodes of the unfolded heap configurations are tagged
with their respective roles in the transition. Finally, we record how the objects
are modified and extract the mapping of the object mapping.

In our example, there are two maximal nodes: H0 and Herr, where Herr

denotes the error configurations. H0 and Herr together represent the covering
set of the package. Accordingly, the interface shows that H0 captures the “most
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general” abstract heap in the use of this package; each “correct” method call
corresponds to an object mapping over H0. We omit showing the remaining 12
object mappings of the interface.

5.2.3 Concrete Semantics

We now present a core OO language.

Syntax. For a set of symbols X (including variables), we denote by Exp.X
and Pred.X the set of expressions and predicates respectively, constructed with
symbols drawn from X. We assume there are two special variables this and null.

In our language, a package consists of a collection of class definitions. A class
definition consists of a class name, a constructor method, a set of fields, and a
set of method declarations partitioned into public and protected methods. A
constructor method has the same name as the class, a list of typed arguments,
and a body. We assume fields are typed with either a finite scalar type (e.g.,
Boolean), or a class name. The former are called scalar fields and the latter
reference fields. Intuitively, reference fields refer to other objects on the heap.
Methods consist of a signature and a body. The signature of a method is a
typed list of its arguments and its return value. The body of a method is given
by a control flow automaton over the fields of the class. Intuitively, any client
can invoke public methods, but only other classes in the package can invoke
protected ones.

A control flow automaton (CFA) over a set of variables X and a set of
operations Op.X is a tuple F = (X,Q, q0, qf , T ), where Q is a finite set of
control states, q0 ∈ Q (resp. qf ∈ Q) is a designated initial state (resp. final
state), and T ⊆ Q× Op.X ×Q is a set of edges labeled with operations.

For our language, we define the set Op.X of operations over X to consist
of: (i) assignments this.x := e, where x ∈ X and e ∈ Exp.X; (ii) assumptions,
assume(p), where p ∈ Pred.({this} ∪ X), (iii) construction this.x = new(C(ā)),
where C is a class name and ā is a sequence in Exp.X, and (iv) method calls
this.x := this.y.m(ā), where x, y ∈ X.

Formally, a class C = (A, c,Mp,Mt), where A is the set of fields, c is the
constructor, Mp is the set of public methods, and Mt is the set of protected
methods. We use C also for the name of the class. A package P is a set of
classes.

We make the following assumptions. First, all field and method names are
disjoint. Second, each class has an attribute ret used to return values from
a method to its callers. Third, all CFAs are over disjoint control locations.
Fourth, a package is well-typed, in that assignments are type-compatible, called
methods exist and are called with the right number and types of arguments, etc.
Finally, it is not clear how the pushdown system and depth-bounded systems
mixes and whether there exists an bqo that may accomodate both. Therefore,
we omit recursive method calls from our the analysis.

A client I of a package P is a class with exactly one method main, such that
(i) for each x ∈ I.A, we have the type of x is either a scalar or a class name from
P , (ii) in all method calls this.x = this.y.m(ā), m is a public method of its class,
and (iii) edges of main can have the additional non-deterministic assignment
havoc(this.x). An OO program is a pair (P, I) of a package P and a client I.
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Concrete Semantics. We give the semantics of an OO program as a labeled
transition system. A transition system S = (X,X0,→) consists of a set X of
states, a set X0 ⊆ X of initial states, and a transition relation→ ⊆ X×X. We
write x→ x′ for (x, x′) ∈→.

Fix an OO program S = (P, I). It induces a transition system (Conf ,U0,→),
with configurations Conf , initial configurations U0, and transition relation →
as follows.

Let O be a countably infinite set of object identifiers (or simply objects) and
let class : O → P ∪ {I,nil} be a function mapping each object identifier to its
class. A configuration u ∈ Conf is a tuple (O, this, q , ν, st), where O ⊆ O is a
finite set of currently allocated objects, this ∈ O is the current object (i.e., the
receiver of the call to the method currently executed), q is the current control
state, which specifies the control state of the CFA at which the next operation
will be performed, ν is a sequence of triples of object, variable, and control
location (the program stack), and st is a store, which maps an object and a field
to a value in its domain. We require that O contains a unique null object null
with class(null) = nil . We denote by Conf the set of all configurations of S.

The set of initial configurations U0 ⊆ Conf is the set of configurations
u0 = ({null , oI} , this,main.q0, ε, st) such that (i) class(oI) = I, (ii) the current
object this = oI , (iii) the value of all reference fields of all objects in the store is
null and all scalar fields take some default value in their domain, and (iv) the
control state is the initial state of the CFA of the main method of I and the
stack is empty.

Given a store, we write st(e) and st(p) for the value of an expression e or
predicate p evaluated in the store st , computed the usual way.

The transitions in → are as follows. A configuration (O, this, q , ν, st) moves
to configuration (O′, this ′, q ′, ν′, st ′) if there is an edge (q , op, q ′) in the CFA of
q such that

• op = this.x := e and O′ = O, this ′ = this, ν′ = ν, and st ′ = st [(this, x) 7→
st(e)].

• op = assume(p) and O′ = O, this ′ = this, ν′ = ν, st(p) = 1, and st ′ = st .

• op = this.x := this.y.m(ā) and O′ = O, this ′ = this, ν′ = (this, x, q ′)ν,
and q ′ = m.q0, and the formal arguments of m are assigned values st(ā)
in the store.

• op = this.x := new(C(ā)) and O′ = O ] {o} for a new object o with
class(o) = C, this ′ = o, ν′ = (this, x, q ′)ν, and q ′ = c.q0 for the construc-
tor c of C, and the formal arguments of c are assigned values st(ā) in the
store.

• op = havoc(this.x): O′ = O, this ′ = this, and st ′ = st [(this, x) 7→ v],
where v is some value chosen non-deterministically from the domain of x.

Finally, if q is the final node of a CFA and ν = (o, x, q)ν′, and the configuration
(O, this, q , ν, st) moves to (O, o, q, ν′, st ′), where st ′ = st [o.x 7→ st(this.ret)]. If
none of the rules apply, the program terminates.

To model error situations, we assume that each class has a field err which
is initially 0 and set to 1 whenever an error is encountered (e.g., an assertion is
violated). An error configuration is a configuration u in which there exists an
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Figure 5.7: Two configurations of set and iterator package

object o ∈ u.O such that o.err = 1. An OO program is safe if it does not reach
any error configuration.

Example 9 Figure 5.7 depicts two configurations for a set of objects belonging
to a “set and iterator” package. For the sake of brevity, we do not show the code
for this package, but the functionality of the package is standard. The package
has three classes, namely, Set, Iterator, and Elem. The Elem class can create
a linked list to store the elements of a Set object. An Iterator object is used
to traverse the elements of its corresponding Set object via its pos attribute as
an index. It can also remove an element of the Set object through its remove

method. An Iterator object can perform these operations only if it has the
same version as its corresponding Set object. The Iterator version is stored
in the iver field and the Set version in sver. In this example, we focus on the
remove method. The remove method of an Iterator object invokes the delete

method of its corresponding Set object, passing its pos attribute as a parameter.
The delete method, in turn, deletes the posth Elem object that is accessible
through its head attribute. The version attributes of both the Iterator and Set

objects are incremented, while the version attributes of other Iterator objects
remain the same. The two configurations in Figure 5.7 are abbreviated to show
only the information relevant to this example.

The configuration

u = ({s, i1 , i2 .e1 , e2}, s, ., 〈(i2 , ., .)〉, {((i1 , iver), 2 ), ((i2 , iver), 2 ), · · · }),

depicted in Figure 5.7(a), is one of the configurations during the exe-
cution of i2.remove, namely the configuration immediately after executing
this.iter of.delete(this.pos). After a number of steps, the computation reaches
configuration

u′ = ({s, i1 , i2 .e1 , e2}, s, ., ε, {((i1 , iver), 2 ), ((i2 , iver), 3 ), · · · }),

depicted in Figure 5.7(b), which is the configuration after o2.remove() has com-
pleted and the control has returned to the client, I. At u′, i2 still has the same
version (i2 .iver) as s, (s.sver), but i1 has a different version now. Thus, i1
cannot traverse or remove an element of s any more.

5.2.4 Dynamic Package Interface (DPI)

For a package P , its dynamic package interface is essentially a set of abstract
object graphs representing heap configurations together with a set of object map-
pings over them, one for each distinct method invocation.
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Each abstract object graph represents an unbounded number of heap config-
urations. An object mapping for a method invocation specifies how the objects
of a source heap configuration are transformed to the objects of a destination
heap configuration. Object mappings use an extended notion of object graphs
with role labelling to identify the callee and the arguments of the method calls.
Up to isomorphism, the set of object mappings of a DPI specify the effect of all
possible public method calls on distinct heap configurations of a package.

In the remainder of this section, in Section 5.2.6, we present the notions of
abstract object graphs and unfolded object graphs, followed by the notion of
object mapping, in Section 5.2.7. In Section 5.2.8, we present DPI formally.

5.2.5 Most General Client and Granularity of the DPI

To simplify the presentation of DPI, we currently do not consider concurrency.
This means that the most general client is a sequential program, i.e. one method
is called only when the previous method returned. Therefore, the states of the
DPI are only at the boundary of method calls in the most general client. In
those configuration the stack is empty and can be omitted. This explains why
the abstract object graphs do not have a stack.

Just before a call, the most general client guesses the object on which to
call the method and the parameter of the method. These steps are also not
explicitly represented in the DPI, but in the unfolded objects graphs attached
to the object mappings. There are roles for the callee and the arguments of the
method. Furthermore, the object mappings (Section 5.2.7) represent the whole
execution of methods as a single step. Obviously, this assumes that the methods
are terminating.

5.2.6 Abstract Object Graphs

An abstract object graph H over a package P is a tuple (AL,AR,O , l , st ,nl)
with

• AL and AR: sets of object labels and reference fields, respectively,

• O : a set of object nodes identifiers,

• st : (O ×AR) 7→ O the reference edge function,

• l :O → AL the object labelling function,

• nl :O → N0, the nesting level function.

We call an object node with nesting level zero an object instance and otherwise
call it an abstract object. An abstract object represents an unbounded number of
object instances. If an object node is connected via a reference label to another
object node in st , it means that one or more object instances (depending on their
relative nesting levels) in the source node have reference attributes pointing to
an object instance in the destination node. We denote by class the function
from AL to P that extracts the class information from a label.
An abstract object graph is well-formed if: ∀(o1, r, o2), st(o1, r) = o2 ⇒ nl(o1) ≥
nl(o2). This constraint is necessary because it should not be possible for an ob-
ject instance to reference more than one object instance with the same reference
attribute.
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Abstract object graphs are a more structured version of the labeled digraphs
used previously, in the sense that they have a semantics that can directly be
related to the concrete semantics of the simple OO language introduced be-
fore. Furthermore, since they are a specific case of the graphs used before, the
previous results also apply to them.

Example 10 Let us consider the graph in Figure 5.5c, which is an abstract
object graph. Let the object node labelled with [Vnd ]Viewer be denoted by x, then
Vnd is the identifier that we use to refer to x in the description, and we have
l(x ) = Viewer, which tells the class of x and the predicates and their valuation
(none in this case). Finally, we have nl(x ) = 2 .

An unfolded object graph G over P is a tuple (AL,R,AR,O , l , st ,n,nl) where

• (AL,AR,O , l , st ,nl) is an abstract object graph over P ,

• R is a set of object role labels, and

• n :R → O is a role name function.

An object of an unfolded object graph may have a role name in addition to
its label. A role name indicates the fixed responsibility of the object instance
during a method call.

An unfolded object graph can be obtained from an abstract object graph
by unfolding the graph and adding a role function. The unfolding step copies
a subgraph with nesting level greater than 0 and decreases the nesting level of
the copy by one. This process is repeated until all the roles can be assigned to
object instances.

An unfolded object graph is well-formed if:

i. The role name function labels all object instances and only them:
∀o ∈ O , ∃r ∈ R, n(r) = o⇔ nl(o) = 0;

ii. the role name function is injective: ∀r1, r2 ∈ R, n(r1) = n(r2)⇒ r1 = r2.

Henceforth, we consider only well-formed abstract object graphs and well-
formed unfolded object graphs. We denote the set of all abstract object graphs
and the set of all unfolded object graphs over P as HP and GP , respectively.

In our analysis, each unfolded object graph G ∈ GP corresponds to a unique
abstract object graph H ∈ GH , as we will see in the next section. We assume
the source function src :GP → HP , which determines the abstract object graph
of an unfolded object graph.

Example 11 Let us consider the graph inside the box in the left hand side of
Figure 5.6a, which is an unfolded object graph whose source is H0 in Figure 5.5c.
Let the object node labelled with callee : [Vnd ]Viewer be x, then l(x ) = Viewer,
nl(x ) = 0 , and n(x ) = callee.

The DPI shows the state of the system (i.e., the package together with its
most general client) at the call and return points of public methods in the
package. In those states, the stack of the client is empty and this always refers
to the most general client. Therefore, we omit this information in abstract
object graphs. The roles in abstract graphs can be seen as a projection of the
internal state of the most general client on the objects in the heap. That is, the
object instance of the most general client itself is not represented as a node in
the graphs.
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5.2.7 Object Mapping

Notation. For a package P , we denote byMP the set of all its public methods:
MP =

⋃
C∈P C.Mp. For a public method m(C1, · · · , Cn) of a class C, we define

its signature as sig(m) = {(C, callee), (C1,arg0), · · · , (Cn,argn)}.
An object mapping of a method m ∈ MP is a tuple (m,G,G′, k) where

G,G′ ∈ GP , k ⊆ G.O × G′.O is a relation, and the following conditions are
satisfied:

• G includes object instances for sig(m):

∀(C, s) ∈ sig(m), ∃o ∈ G.O , class(G.l(o)) = C ∧G.n(o) = s;

• dom(k) = G.O ;

• k preserves the class of an object: ∀(o1, o2) ∈ k, class(G.l(o1)) =
class(G′.l(o2));

• k is functional on object instances: ∀(o1, o2), (o1, o3) ∈ k, G.nl(o1) = 0⇒
o2 = o3;

• k preserves the nesting level of object instances:
∀(o1, o2) ∈ k, G.nl(o1) = 0⇔ G′.nl(o2) = 0;

• k preserves the role names of object instances:
∀(o1, o2) ∈ k, G.nl(o1) = 0⇒ G.n(o1) = G′.n(o2).

For a set M ⊆ GP , by MapsP (M) we denote the set of all object mappings
(m,G,G′, k) of package P such that G,G′ ∈M .

An object mapping is a compact representation of the effect that a method
call has on the objects of a package. The mapping specifies how objects are
transformed by the method call. A pair (o1, o2) ∈ k indicates that each concrete
object represented by the abstract object o1 might become part of the target
abstract object o2. The total number of concrete objects is always preserved.
Because abstract object graphs can represent more than one concrete state,
there can be more than one object mapping associated with a given method call
and source graph, as well as multiple target objects for each source object in
the source graph of one object mapping.

Example 12 Let us consider the two unfolded object graphs inside the
boxes in the left and right hand side of Fig. 5.6a. Denote these two
graphs by G and G′. Figure 5.6a then represents the object mapping:
(set, G,G′, {(V, V ), (La, La), (L,L), (V∗, V∗)}).

Note that in addition to callee and arg0 role names, the object mapping
in Figure 5.6a also uses scope0 ∈ G.R, which labels an object instance that is
not part of the signature of the method. The scopei role names are used to
label all such object instances. One last type of role names that are used by
object mappings is newi role names, which label the objects that are created
by a method call. To improve the readability of some figures we omit abstract
objects that are not modified. We show only the objects part of the connected
component affected by the call.
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5.2.8 Definition: DPI

A DPI of a package P is a tuple (H,G,Ω , E) where

• H ⊆ HP is a finite set of abstract object graphs,

• G ⊆ GP is a finite set of unfolded object graphs,

• Ω ⊆ MapsP (G) the set of object mappings; and

• E ⊆ H the set of error abstract object graphs.

The DPI (H,G,Ω , E) is well-formed if:

i. the unfolded graphs come from H: ∀G ∈ G, src(G) ∈ H

ii. it is safe: ∀(m,G,G′) ∈ Ω , src(G) ∈ (H− E); and

iii. it is complete in that a non-error covering abstract object graph has a
mapping for all methods:

∀H ∈ (H− E), ∀o ∈ H.O , ∀m ∈ class(G.l(o)).Mp, ∃(m,G,G′) ∈ Ω , src(G) = H.

Well-formed DPIs characterize the type of interface that we are interested in
computing for OO packages. Following the analogy between a DPI and an FSM,
the set of abstract object graphs correspond to the “states” of the state machine
and the set of object mappings correspond to the “transitions”. Section 5.2.9
describes how a well-formed DPI can be computed for a package soundly via
an abstract semantics that simulates the concrete semantics of Section 5.2.3.
Henceforth by a DPI, we mean a well-formed DPI.

A DPI can be understood in two ways. The first interpretation comes di-
rectly from the abstract OO program semantics of Section 5.2.9. The second
interpretation views the DPI as a counter program. In this program each H ∈ H
has a control location and for each node in H.O there is a counter variable. The
value of a counter keeps track of the number of concrete objects that are rep-
resented by the corresponding abstract object node. Object mappings can be
translated into updates of the counters. Further details of that interpretation
can be found in Section 5.2.10, 5.1, and [13].

5.2.9 Abstract Semantics for Computing DPI

In this section, we present the abstraction layers that we use to compute the
DPI of a package. First, we present our depth-bounded abstract domain, which
ensures that any chain of objects of a package has a bounded depth when rep-
resented in this domain. Then, we present our ideal abstract domain, which
additionally ensures that any number of objects of a package are represented
finitely. Finally, we describe how the DPI of a package can be computed by
encoding the ideal abstract interpretation of a package as a numerical program.
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Depth-Bounded Abstract Semantics

We now present an abstract semantics for OO programs. Given an OO program
S, our abstract semantics of S is a transition system S#

h = (Conf #,U #
0 ,→#

h )
that is obtained by an abstract interpretation [31] of S. Typically, the system

S#
h is still an infinite state system. However, the abstraction ensures that S#

h

belongs to the class of depth-bounded systems. Depth-bounded systems are
well-structured transition systems that can be effectively analyzed, and this will
enable us to compute the dynamic package interface.

Heap Predicate Abstraction. We start with a heap predicate abstraction,
following shape analysis [105, 97]. Let AP be a finite set of unary abstraction
predicates from Pred.({x} ∪ C.A) where x is a fresh variable different from this
and null. For a configuration u = (O, ·, st) and o ∈ O, we write u |= p(o) iff
st [x 7→ o](p) = 1. Further, let AR be a subset of the reference fields in C.A. We
refer to AR as binary abstraction predicates. For an object o ∈ O, we denote by
AR(o) the set AR ∩ class(o).A.

The concrete domain D of our abstract interpretation is the powerset of
configurations D = P(Conf ), ordered by subset inclusion. The abstract domain

D#
h is the powerset of abstract configurations D#

h = P(Conf #), again ordered

by subset inclusion. An abstract configuration u# ∈ Conf # is like a concrete
configuration except that the store is abstracted by a finite labelled graph, where
nodes are object identifiers, edges correspond to the values of reference fields in
AR, and node labels denote the evaluation of objects on the predicates in AP .
That is, the abstract domain is parameterized by both AP and AR.

Formally, an abstract configuration u# ∈ Conf # is a tuple (O, this, q , ν, η, st)
where O ⊆ O is a finite set of object identifiers, this ∈ O is the current object,
q ∈ F.Q is the current control location, ν is a finite sequence of triples (o, x, q)
of objects, variables, and control location, η : O × AP → B is a predicate
valuation, and st is an abstract store that maps objects in o ∈ O and reference
fields a ∈ AR(o) to objects st(p, a) ∈ O. Note that we identify the elements of
Conf # up to isomorphic renaming of object identifiers.

The meaning of an abstract configuration is given by a concretization func-
tion γh : Conf # → D defined as follows: for u# ∈ Conf # we have u ∈ γh(u#)
iff (i) u#.O = u.O; (ii) u#.this = u.this; (iii) u#.q = u.q ; (iv) u#.ν = u.ν;
(v) for all o ∈ u.O and p ∈ AP , u#.η(o, p) = 1 iff u |= p(o); and (vi) for all
objects o ∈ O, and a ∈ AR(o), u.st(o, a) = u#.st(o, a). We lift γh pointwise

to a function γh : D#
h → D by defining γh(U

#) =
⋃{

γh(u
#) | u# ∈ U#

}
.

Clearly, γh is monotone. It is also easy to see that γh distributes over meets
because for each configuration u there is, up to isomorphism, a unique abstract
configuration u# such that u ∈ γh(u#). Hence, let αh : D → D#

h be the unique

function such that (αh, γh) forms a Galois connection between D and D#
h , i.e.,

αh(U) =
⋂{

U# | U ⊆ γh(U#)
}

.

The abstract transition system S#
h = (Conf #,U #

0 ,→#
h ) is obtained by

setting U #
0 = αh(U0) and defining →#

h ⊆ Conf # × Conf # as follows. Let

u#, v# ∈ Conf #. We have u# →#
h v# iff v# ∈ αh ◦ post.S ◦ γh(u#).

Theorem 12 The system S#
h simulates the concrete system S, i.e., (i) U0 ⊆

γh(U
#
0 ) and (ii) for all u, v ∈ Conf and u# ∈ Conf #, if u ∈ γh(u#) and u→ v,
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then there exists v# ∈ Conf # such that u# →#
h v# and v ∈ γh(v#).

Proof. (Sketch) We can use the framework of abstract interpretation [32] to
prove the theorem. By definition, (αh, γh) forms a Galois connection between

D and D#
h . Furthermore, u# →#

h v# iff v# ∈ αh ◦ post.S ◦ γh(u#). �

Depth-Boundedness. Let u# ∈ Conf # be an abstract configuration. A
simple path of length n in u# is a sequence of distinct objects π = o1, . . . , on
in u#.O such that for all 1 ≤ i < n, there exists ai with u#.st(oi, ai) = oi+1 or
u#.st(oi+1, ai) = oi (the path is not directed). We denote by lsp(u#) the length
of the longest simple path of u#. We say that a set of abstract configurations
U# ⊆ Conf # is depth-bounded if U# is bounded in the length of its simple
paths, i.e., there exists k ∈ N such that ∀u# ∈ U#, lsp(u#) ≤ k and the size of
the stack |u#.ν| ≤ k.

We show that under certain restrictions on the binary abstraction predicates
AR, the abstract transition system S#

h is a well-structured transition system.
For this purpose, we define the embedding order on abstract configurations. An
embedding for two configurations u#, v# : Conf # is a function h : u#.O → v#.O
such that the following conditions hold: (i) h preserves the class of objects:
for all o ∈ u#.O, class(o) = class(h(o)); (ii) h preserves the current object,
h(u#.this) = v#.this; (iii) h preserves the stack, h̄(u#.ν) = v#.ν where h̄ is the
unique extension of h to stacks; (iv) h preserves the predicate valuation: for
all o ∈ u#.O and p ∈ AP , u#.η(o, p) iff v#.η(h(o), p); and (v) h preserves the
abstract store, i.e., for all o ∈ u#.O and a ∈ AR(o), we have h(u#.st#(o, a)) =
v#.st#(h(o), a). The embedding order �: Conf # × Conf # is then as follows:
for all u#, v# : Conf #, u# � v# iff u# and v# share the same current control
location (u#.q = v#.q) and there exists an injective embedding of u# into v#.

Lemma 17 (1) The embedding order is monotonic with respect to abstract tran-

sitions in S#
h = (Conf #,U #

0 ,→#
h ). (2) Let U# be a depth-bounded set of ab-

stract configurations. Then (U#,�) is a bqo.

Proof. The first part follows form the definitions. For the second part, we
can reduce it to the result from Chapter 4. We just need to encode the stack
into the graph. The stack itself can be easily encoded as a chain with special
bottom and top node. The assumption that the stack is bounded guarantees
that can still apply Lemma 15. �

If the set of reachable configurations of the abstract transition system S#
h is

depth-bounded, then S#
h induces a well-structured transition system.

Theorem 13 If Reach(S#
h ) is depth-bounded, then (Reach(S#),U #

0 ,→#
h ,�) is

a WSTS.

Proof. The theorem follows from Lemma 17 and [80, Theorem 2]. �

In practice, we can ensure depth-boundedness of Reach(S#
h ) syntactically

by choosing the set of binary abstraction predicates AR such that it does not
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Figure 5.8: Two depth-bounded abstract configurations

contain reference fields that span recursive data structures. Such reference fields
are only allowed to be used in the defining formulas of the unary abstraction
predicates. Recursive data structures can be dealt with only if they are private to
the package, i.e. not exposed to the user. In that case the predicate abstraction
can use a more complex domain that understand such shapes, e.g. [105]. In

the next section, we assume that the set Reach(S#
h ) is depth-bounded and we

identify S#
h with its induced WSTS.

Example 13 Figure 5.8 depicts the two corresponding, depth-bounded abstract
configurations of the concrete configurations in Figure 5.7. The objects are
labelled with their corresponding unary predicates. A labelled arrow between two
objects specifies that the corresponding binary predicate between two object holds.
The set of unary abstraction predicates consists of:

empty(x ) ≡ x.size = 0
synch(x ) ≡ x.iver = x.iter of.sver
mover(x ) ≡ x.pos < x.iter of.size
positive(x ) ≡ x.e > 0

The set of binary abstraction predicates is AR = {iter of}. If we had also
included head and next in AR, the resulting abstraction would not have been
depth bounded.

Ideal Abstraction

In our model, the errors are local to objects. Thus, we are looking at the
control-state reachability question. This means that the set of abstract error
configurations is upward-closed with respect to the embedding order �, i.e.,
we have U #

err =↑ U #
err . From the monotonicity of � we therefore conclude

that Reach(S#
h ) ∩ U #

err = ∅ iff Cover(S#
h ) ∩ U #

err = ∅. This means that if we

analyze the abstract transition system S#
h modulo downward closure of abstract

configurations, this does not incur an additional loss of precision. We exploit
this observation as well as the fact that S#

h is well-structured to construct a
finite abstract transition system whose configurations are given by downward-
closed sets of abstract configurations. We then show that this abstract transition
system can be effectively computed.

Every downward-closed subset of a wqo is a finite union of ideals. In Chap-
ter 3, we formalized an abstract interpretation coined ideal abstraction, which
exploits this observation to obtain a generic terminating analysis for computing
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an over-approximation of the covering set of a WSTS. We next show that ideal
abstraction applies to the depth-bounded abstract semantics by providing an
appropriate finite representation of ideals and how to use it to compute the
DPI. The abstract domain D#

idl of the ideal abstraction is given by downward-
closed sets of abstract configurations, which we represent as finite sets of ideals.
The concrete domain is D#

h . The ordering on the abstract domain is subset
inclusion. The abstraction function is downward closure.

Formally, we denote by Idl(Conf #) the set of all depth-bounded ideals of
abstract configurations with respect to the embedding order. Define the quasi-
ordering v on Pfin(Idl(Conf #)) as the point-wise extension of ⊆ from the ideal
completion Idl(Conf #) of Conf #(�) to Pfin(Idl(Conf #)):

I1 v I2 ⇐⇒ ∀I1 ∈ I1.∃I2 ∈ I2. I1 ⊆ I2

The abstract domain D#
idl is the quotient of Pfin(Idl(Conf #)) with respect to the

equivalence relation v ∩ v−1. For notational convenience we use the same sym-
bol v for the quasi-ordering on Pfin(Idl(Conf #)) and the partial ordering that

it induces on D#
idl. We further identify the elements of D#

idl with the finite sets of

maximal ideals, i.e., for all L ∈ D#
idl and I1, I2 ∈ L, if I1 ⊆ I2 then I1 = I2. The

abstract domain D#
idl is defined as Pfin(Idl(Conf #)). The concretization func-

tion γidl : D#
idl → D#

h is γidl(I) =
⋃
I. Further, define the abstraction function

αidl : D#
h → D#

idl as αidl(U
#) =

{
I ∈ Idl(Conf #) | I ⊆ ↓U#

}
. From the ideal

abstraction framework, it follows that (αidl, γidl) forms a Galois connection be-

tween D#
h and D#

idl. The overall abstraction is then given by the Galois connec-

tion (α, γ) between D and D#
idl, which is defined by α = αidl◦αh and γ = γh◦γidl.

We define the abstract post operator post# of S as the most precise abstraction
of post.S with respect to this Galois connection, i.e., post#.S = α ◦ post.S ◦ γ.

In the following, we assume the existence of a sequence widening operator
∇idl : Idl(Conf #)+ ⇀ Idl(Conf #). The operator ∇idl is an adaptation of the
operator ∇DBP from Section 3.7.3.

The ideal abstraction computes the covering set from which we can extract
a finite labeled transition system S#

idl whose configurations are ideals of abstract
configurations. The transitions corresponds to applying the rules to the ideals
of the covering set followed by transitions labeled with ε, which we refer to as
covering transitions. We call S#

idl the abstract covering system of S#
h . This is

because the set of reachable configurations of S#
idl over-approximates the covering

set of S#
h , i.e., Cover(S#

h ) ⊆ γidl(Reach(S#
idl)).

Formally, we define S#
idl = (Iidl, I0,→#

idl) as follows. Given a downward-

closed inductive invariant C of S#
idl the set of configurations Iidl ⊆ Idl(Conf #) is

composed of the maximal incomparable ideals in C. The initial configurations
I0 are given by {s ∈ Iidl | αidl(U

#
0 ) ⊆ s}. The transition relation→#

idl⊆ Iidl×Iidl
is defined as the smallest set satisfying the following condition: for every I ∈ Iidl
and I ′ ∈ post#.S◦γidl(I), there is an I ′′ ∈ Iidl such that I ′ ⊆ I ′′ and (I, I ′′) ∈→#

idl.

Theorem 14 The abstract covering system S#
idl is computable and finite.

Proof. (Sketch) Following the result from Chapter 3, we can effectively

compute an inductive overapproximation C of the covering set of S#
idl. From

115



Lemma 4, we have a finite representation of C. Finally, →#
idl can be effectively

computed as we will see in the remainder of the section. �

We now state our main soundness theorem.

Theorem 15 (Soundness) The abstract covering system S#
idl simulates S,

i.e., (i) U0 ⊆ γ(I0) and (ii) for all I ∈ Iidl and u, v ∈ Reach(S), if u ∈ γ(I)

and u→ v, then there exists J ∈ Iidl such that v ∈ γ(J) and I →#
idl J .

Proof. (Sketch) The abstract covering system is just a lifting of the original
transition system to a finite-state system by partitioning the states into a
finite number of sets given by the incomparable ideals in covering set or an
overapproximation of it. The lifting relies on the monotonicity property of the
underlying WSTS to ensures simulation. The transition relation →#

idl maps
states from ideal to ideal while ensuring that the target ideal contains at least
one larger state. �

In the rest of this section we explain how we represent ideals of abstract con-
figurations and how the operations for computing the abstract covering system
are implemented.

Representing Ideals of Abstract Configurations. The ideals of depth-
bounded abstract configurations are recognizable by regular hedge au-
tomata [112]. We can encode these automata into abstract configurations I#

that are equipped with a nesting level function. The nesting level function in-
dicates how the substructures of the abstract store of I# can be replicated to
obtain all abstract configurations in the represented ideal.

Formally, a quasi-ideal configuration I# is a tuple (O, this, q , ν, η, st ,nl)
where nl : O → N is the nesting level function and (O, this, q , ν, η, st) is an
abstract configuration, except that η is only a partial function η : O×AP ⇀ B.
We denote by QIdlConf # the set of all quasi-ideal configurations. We call
I# = (O, this, q , ν, η, st ,nl) simply ideal configuration, if η is total and for all
o ∈ O, a ∈ AR(o), nl(o) ≥ nl(st(o, a)). We denote by [I#] the inherent abstract
configuration (O, this, q , ν, η, st) of an ideal configuration I#. Further, we de-

note by IdlConf # the set of all ideal configurations and by IdlConf #
0 the set

of all ideal configurations in which all objects have nesting level 0. We call the
latter finitary ideal configurations.

Meaning of Quasi-Ideal Configurations. An inclusion mapping be-
tween quasi-ideal configurations I# = (O, this, q , ν, st ,nl) and J# =
(O′, this ′, q ′, ν′, st ′,nl ′) is an embedding h : O → O′ that satisfies the fol-
lowing additional conditions: (i) for all o ∈ O, nl(o) ≤ nl ′(h(o)); (ii) h is
injective with respect to level 0 vertices in O′: for all o1, o2 ∈ O, o′ ∈ O′,
h(o1) = h(o2) = o′ and nl ′(o′) = 0 implies o1 = o2; and (iii) for all distinct
o1, o2, o ∈ O, if h(o1) = h(o2), and o1 and o2 are both neighbors of o, then
nl ′(h(o1)) = nl ′(h(o2)) > nl ′(h(o)).

We write I# ≤h J# if q = q ′, and h is an inclusion mapping between I#

and J#. We say that I# is included in J#, written I# ≤ J#, if I# ≤h J# for
some h.
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Figure 5.9: Two ideal abstract configurations

We define the meaning JI#K of a quasi-ideal configuration I# as the set of
all inherent abstract configurations of the finitary ideal configurations included
in I#:

JI#K =
{

[J#] | J# ∈ IdlConf #
0 ∧ J# ≤ I#

}
We extend this function to sets of quasi-ideal configurations, as expected.

Proposition 16 Ideal configurations exactly represent the depth-bounded ideals

of abstract configurations, i.e.,
{

JI#K | I# ∈ IdlConf #
}

= Idl(Conf #).

Since the relation ≤ is transitive, we also get:

Proposition 17 For all I#, J# ∈ QIdlConf #, I# ≤ J# iff JI#K ⊆ JJ#K.

It follows that inclusion of (quasi-)ideal configurations can be decided by
checking for the existence of inclusion mappings, which is an NP-complete prob-
lem.

Quasi-ideal configurations are useful as an intermediate representation of
the images of the abstract post operator. They can be thought of as a more
compact representation of sets of ideal configurations. In fact, any quasi-ideal
configuration can be reduced to an equivalent finite set of ideal configuration.
We denote the function performing this reduction by reduce : QIdlConf # →
Pfin(IdlConf #) and we extend it to sets of quasi-ideal configurations, as ex-
pected.

Example 14 Figure 5.9 depicts the two corresponding, ideal abstract configura-
tions of the two depth-bounded abstract configurations in Figure 5.8. The nesting
level of each object is shown by the number next to it. When the abstract config-
urations in Figure 5.8 are considered as finitary ideal configurations, then they
are included in their corresponding ideal configurations in Figure 5.9. The two
inclusion mappings between the corresponding configurations in Figure 5.8 and

Figure 5.9 are
{

(i1, i
#
1 ), (i2, i

#
2 ), (s, s#), (e1, e

#), (e2, e
#)
}

.

Note that since the nesting level of s# :Set in both ideal configurations is
zero, it is not possible to define inclusion mapping when there are more than
one concrete set object. However, if the nesting levels of the set and iterator
objects are incremented, then such an inclusion mapping can be defined.
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Computing the Abstract Post Operator. We next define an operator
Post#.S that implements the abstract post operator post#.S on ideal configu-
rations. In the following, we fix an ideal configuration I# = (O, this, q , ν, st ,nl)
and a transition t = (q , op, q′) in S. For transitions not enabled at I#, we set
Post#.S.t(I#) = ∅.

We reduce the computation of abstract transitions [I#] → u# to reasoning
about logical formulas. For efficiency reasons, we implicitly use an additional
Cartesian abstraction [12] in the abstract post computation that reduces the
number of required theorem prover calls. For a set of variables X, we assume
a symbolic weakest precondition operator wp : Op.(C.A) × Pred.(X ∪ C.A) →
Pred.(X ∪C.A) that is defined as usual. In addition, we need a symbolic encod-
ing of abstract configurations into logical formulas. For this purpose, define a
function Γ : O → Pred.(O∪C.A) as follows: given o ∈ O, let O(o) be the subset
of objects in O that are transitively reachable from o in the abstract store st ,
then Γ(o) is the formula

Γ(o) = distinct(O(o) ∪O(this)) ∧ this = this ∧ null = null ∧∧
o′∈O(o)∪O(this)

 ∧
p∈AP

η(o′, p) · p(o′) ∧
∧

a∈AR(o′)

o′.a = st(o′.a)


where η(o′, p) · p(o′) =

{
p(o′) if η(o′, p) = 1

¬p(o′) if η(o′, p) = 0.

Now, let J# be the set of all quasi-ideal configurations J# =
(O, this, q′, ν, η′, st ′,nl) that satisfy the following conditions:

• Γ(this) ∧ q is satisfiable, if op = assume(q);

• for all o ∈ O, p ∈ AP , if Γ(o) |= wp(op, p(o)), then η′(o, p) = 1, else if
Γ(o) |= wp(op,¬p(o)), then η′(o, p) = 0, else η′(o, p) is undefined;

• for all o, o′ ∈ O, a ∈ AR(o), if Γ(o) ∧ Γ(o′) |= wp(op, o.a = o′), then
st ′(o, a) = o′, else if Γ(o) ∧ Γ(o′) |= wp(op, o.a 6= o′), then st ′(o, a) 6= o′.

Then define Post#.S.t(I#) = reduce(J#).

5.2.10 Computing the Dynamic Package Interface

We now describe how to compute the dynamic package interface for a given
package P . The computation proceeds in three steps. First, we compute the
OO program S = (P, I) that is obtained by extending P with its most general

client I. Next, we compute the abstract covering system S#
idl of S as described

in Sections 5.2.9 and 5.2.9. We assume that the user provides sets of unary
and binary abstraction predicates AP , respectively, AR that define the heap
abstraction. Alternatively, we can use heuristics to guess these predicates from
the program text of the package. For example, we can add all branch conditions
in the program description as predicates. Finally, we extract the package inter-
face from the computed abstract covering system. We describe this last step in
more detail.

We can interpret the abstract covering system as a numerical program. The
control locations of this program are the ideal configurations in S#

idl. With each
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abstract object occurring in an ideal configuration we associate a counter. The
value of each counter denotes the number of concrete objects represented by the
associated abstract object. While computing S#

idl, we do some extra book keep-

ing and compute for each transition of S#
idl a corresponding numerical transition

that updates the counters of the counter program. These updates capture how
many concrete objects change their representation from one abstract object to
another. A formal definition of such numerical programs can be found in [13].

The dynamic package interface DPI (P ) of P is a numerical program that

is an abstraction of the numerical program associated with S#
idl. The control

locations of DPI (P ) are the ideal configurations in S#
idl that correspond to call

sites, respectively, return sites to public methods of classes in P , in the most
general client. A connecting path in S#

idl for a pair of such call and return sites
(along with all covering transitions connecting ideal configurations on the path)
corresponds to the abstract execution of a single method call. We refer to the
restriction of the numerical program S#

idl to such a path and all its covering tran-
sitions as a call program. Each object mapping of DPI (P ) represents a summary
of one such call program. Hence, an object mapping of DPI (P ) describes, both,
how a method call affects the state of objects in a concrete heap configuration
and how many objects are effected.

Note that a call program may contain loops because of loops in the method
executed by the call program. The summarization of a call program therefore
requires an additional abstract interpretation. The concrete domain of this ab-
stract interpretation is given by transitions of counter programs, i.e., relations
between valuations of counters. The concrete fixed point is the transitive clo-
sure of the transitions of the call program. The abstract domain provides an
appropriate abstraction of numerical transitions. How precisely the package in-
terface captures the possible sequences of method calls depends on the choice
of this abstract domain and how convergence of the analysis of the call pro-
grams is enforced. We chose a simple abstract domain of object mappings that
distinguishes between a constant number, respectively, arbitrary many objects
transitioning from an abstract object on the call site of a method to another
on the return site. However, other choices are feasible for this abstract domain
that provide more or less information than object mappings.

5.2.11 Experiences

We have implemented our system by extending Picasso. Picasso uses an ideal
abstraction to compute abstract coverability DAGs of depth-bounded graph
rewriting systems. Our extension of Picasso computes a dynamic package inter-
face from a graph rewriting system that encodes the semantics of the method
calls in a package.2

For a graph-rewriting system that represents a package, our tool first com-
putes its covering set. Using the elements of the covering set, it then performs
unfolding over them with respect to all distinct method calls to derive the object
mappings of the DPI of the package. The computation of the covering elements
and the object mappings are carried out as described in the previous section.

In addition to the Viewer and Label example, described in Section 5.2.2, we

2Our tool and the full results of our experiments can be found at: http://pub.ist.ac.at/

~zufferey/picasso/dpi/index.html
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have experimented with other examples: a set and iterator package, which we
used as our running example in the previous sections, and the JDBC statement
and result package. In the remainder of this section, we present the DPIs for
these packages.

Set and Iterator. We considered a simple implementation of the Set and It-
erator classes in which the items in a set are stored in a linked list. The Iterator
class has the usual next, has next, and remove methods. The Set class provides
a method iterator, which creates an Iterator object associated with the set, and
an add method, which adds a data element to the set. The interface of the pack-
age is meant to avoid raising exceptions of types NoSuchElementException and
ConcurrentModificationException. A NoSuchElementException is raised whenever
the next method is called on an iterator of an empty list. A ConcurrentModifi-
cationException is raised whenever an iterator accesses the set after the set has
been modified, either through a call to the add method of the set or through
a call to the remove method of another iterator. An iterator that removes an
element can still safely access the set afterwards. (Similar restrictions apply to
other Collection classes that implement Iterable.)

We used the following predicates. The unary abstraction predicate empty(s)
determines whether the size of a Set object s is zero or not. For Iterator objects,
we specified two predicates that rely on the attributes of both the Set and the
Iterator classes. The predicate sync(i) holds for an Iterator object i that has the
same version as its associated Set object. The predicate mover(i) specifies that
the position of an Iterator object i in the list of its associated Set object is less
than the size of the set.

Our algorithm computes the maximal configurations H0, shown in Fig-
ure 5.10a. There are also four error abstract heap configurations, which cor-
respond to different cases in which one of the two exceptions is raised for an
Iterator object. Figure 5.10b and 5.10c show the object mappings of two tran-
sitions. For the sake of clarity, we have omitted the name of the reference
attribute iter of in the mappings. While both transitions invoke the remove()
method on an Iterator object whose mover and sync predicates are true, they
have different effects because they capture different concrete heaps represented
by the same abstract heap H0. The first transition shows the case when the
callee object remains a mover, i.e., its pos field does not refer to the last element
of the list. The second transition shows the case when the callee object becomes
a non-mover; i.e., before the call to remove, its pos field refers to the last element
of the linked list. In both transitions, the other Iterator objects that reference
the same Set object all become unsynced. Some of these objects remain movers
while some of them become non-movers. In both cases, the callee remains syc-
ned. There are two other symmetric transitions that capture the cases in which
the Set object becomes empty.

JDBC (Java Database Connectivity) is a Java technology that enables access
to databases of different types. We looked at three classes of JDBC for simple
query access to databases: Connection, Statement, and ResultSet. A Connection
object provides a means to connect to a database. A Statement object can exe-
cute an SQL query statement through a Connection object. A ResultSet object
stores the result of the execution of a Statement object. All objects can be closed
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explicitly. If a Statement object is closed, its corresponding ResultSet object is
also implicitly closed. Similarly, if a Connection object is closed, its correspond-
ing Statement objects are implicitly closed, and so are the open ResultSet objects
of these Statement objects. Java documentation states: “By default, only one
ResultSet object per Statement object can be open at the same time. There-
fore, if the reading of one ResultSet object is interleaved with the reading of
another, each must have been generated by different Statement objects. All ex-
ecution methods in the Statement interface implicitly close a statement’s current
ResultSet object if an open one exists.”

Figure 5.11a shows the maximal abstract heap H0 computed by our tool. It
represents all safe configurations in which the Connection object is either open or
closed. Each type of object has a corresponding “open” predicate that specifies
whether it is open or not. The node c is of particular interest, as it demonstrates
the preciseness of our algorithm: It has the same nesting level as the node b,
which means that an open Statement object can have at most one open ResultSet
object associated with it. We omit showing abstract heaps capturing erroneous
configurations. Lastly, Figure 5.11b shows the object mapping for the close
method call on an open Statement object with an open ResultSet object. The
mapping takes the Statement object and the open ResultSet object to their
corresponding closed objects. All other objects remain the same.

Summary

We have formalized DPIs for OO packages with inter-object references, devel-
oped a novel ideal abstraction for heaps, and given a sound and terminating
algorithm to compute DPIs on the (infinite) abstract domain. In contrast to
previous techniques for multiple objects based on mixed static-dynamic anal-
ysis [91, 100], our algorithm is guaranteed to be sound. While our algorithm
is purely static, an interesting future direction is to effectively combine it with
dual, dynamic [54, 34, 100] and template-based [110] techniques.
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Chapter 6

Conclusion

Our goal was to develop a framework for the analysis of message-passing con-
currency. We choose to focus on depth-bounded systems due to their ability to
faithfully model a wide variety of systems. First, we looked only a π-calculus,
thus, at distributed systems. Later, after moving to a graph-based formalism,
we extended our analysis to shared memory concurrency.

At the beginning our focus was only on safety properties such as the control-
state-reachability problem. We developped an abstraction compute an inductive
invariant, i.e. an overapproximation of the covering set, which provides the
answer to any covering question. Later, we build additional analyses on top of
our safety analysis, e.g. we could generate integer programs that simulate the
input systems and used those to prove termination of the original systems.

Another goal was to have fully-automatic analyses. Because most of the
problems we looked at are undecidable, our algorithms computes sound over-
approximations of the exact solutions. Most of the methods presented in this
thesis have been implemented in the Picasso tool. With Picasso, we can show
that our abstractions are precise, thus, useful in practice.

First, by giving a finite representation to downward-closed sets for depth-
bounded systems, we made the first step toward an analysis of depth-bounded
systems using forward search. We gave two formalizations for the limit ele-
ments: the first one based on the π-calculus and the second one, more amenable
to implementation, based on graphs. In π-calculus the limits are represented
using the replication operator. In the graph formalism we mark subgraphs as
repeatable. The subgraphs correspond to the scope of the replication operator
in π-calculus. As the replication operator subgraphs can be nested (up to the
depth-of the system). Therefore, we call them nested graphs. Nested graphs
are implemented in the Picasso tool and form the basic data structure used by
the analyses.

Then, we propose an abstract interpretation framework to compute a
sound approximations of the covering set of WSTS. The goal is to capture
the essence of acceleration-based algorithms which compute the covering set
and generalize it to classes of systems for which acceleration does not work.
Acceleration-based algorithms terminate only on flattable systems, i.e. systems
that can be saturated with a finite number of simple loops. Unfortunately, due to
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the shape of the state-space, depth-bounded systems are typically not flattable.
Nested loops needs to be considered by the analysis. We sidestep this problem
by replacing acceleration (precise) with widening (overapproximation) to ensure
that our analysis always terminates. We discuss several concrete instances of
our framework including Petri nets, lossy-channel systems, and depth-bounded
systems. The analysis is implemented in Picasso and experiments show that
the analysis is often precise, which makes it a useful tool for verification and
program analysis.

The decision to focus on the covering set rather than the easier cover-
ing problem came from our expectation to extract useful information from the
covering set. In the context of π-calculus and mobile processes the communica-
tion topology, among other information, can be extracted from the covering set.
Therefore, even without a clear safety property to check the analysis can return
useful information. Later, we build more complex analysis using the covering
set as starting point.

[13] presents a method to check whether a depth-bounded system terminates
when subject to some weak fairness constraints. The method builds an numeri-
cal abstraction of the system. Unlike traditional counter abstraction the number
of counters is not fixed a priori, but is determined by the structure of the cov-
ering set. This give us a way of finding complex termination arguments with
an high degree of automation. We implemented the method in Picasso and
show that it is sufficiently precise to prove termination of lock-free algorithms
and distributed systems.

We also started to generalize the notion of state-machine interfaces in the
object-oriented world from single object to groups of interacting objects in what
we call dynamic package interfaces. Similar to the structural counter abstrac-
tion, the method takes the covering set of a depth-bounded systems, applies the
post operator and tracks changes in the configuration graphs. For interfaces,
the tracking tells us how a method called on some object not only affect the
callee but the other objects (pointing-to, pointed-by) around it. We have an
early implementation of the method in Picasso and applied it to common OO
usage patterns like containers and iterators.

At the time of writing this thesis, the work on dynamic package interfaces is
still ongoing. On the short term we are also exploring the use of the structural
counter abstraction to strengthen invariant represented by the covering set and
prove more complex safety properties. One could, for instance, prove that the
number of some elements, e.g. tasks or processes, is preserved over time. We
also want to continue the work on making the analysis more scalable and provide
a frontend which is closer to a more feature-rich programming language. For the
moment, computation of the covering set is quite sensitive to the interleavings
of processes, i.e. the length of the path between two comparable configura-
tions. Therefore, an efficient frontend has to expose only the synchronization
points of a process and deal separately with the “local” computations. There is
some interesting challenges in integrating the techniques used in software-model
checkers, e.g. CEGAR, with the infinite-state backend of Picasso to achieve
a better scalability and proving more complex properties, e.g. dependent on
data such as integers. The exploration done with the Scala compiler plugin
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shows that our analysis is applicable to actor programs but the implementation
requires a large amount of time and has many software engineering challenges.
A direct encoding of the features of Scala into π-calculus has an high cost
in term of performance. For instance, the dynamic dispatch introduces a level
of indirection that makes function calls expensive and increases the size of the
state-space. To achieve good performance the frontend needs to performs many
intermediate analysis to efficiently remove such feature and to produce a system
that is compact enough for the backend to analyse.

On the longer term there is still many open question related to the analysis
of concurrent programs with unbounded process creation. We approached con-
currency through the lens of well-structured systems. Within that framework
monotonicity plays a crucial role. However, precise characterisation of mono-
tonicity is still lacking. Existing characterisation of monotonicity in term of
strength, i.e. how many transition of a larger state are needed to simulate a
smaller state, or strictness, i.e. whether the simulation preserve strictness in
the ordering, does not tell anything about the practicality of the analysis.

The problem of these characterisations is that they are checked on every
states and every transitions. These global and static checks do not reflect what
happen during the state-space exploration. A finer way of looking at monotonic-
ity is required. By looking at the computation of the covering set we observed
the following phenomenon: the number of ideals summarizing the set of ex-
plored state first increases, then decreases as the set get closer to the covering
set. Furthermore, ideals that are closer to being fully saturated tend to simulate
smaller states with less transitions, e.g., in our case, 0 instead of 1. Therefore,
many transitions do not have any effect on the later stage of the exploration. At
that point the analysis usually gets faster and converges quickly. Understanding
this phenomenon and quantifying it is an worthy challenge likely to have a im-
pact. It would give a better understanding of which type of systems are suitable
for the kind of saturation procedure we use and also give us better heuristics
to steer search along path that can be easily saturated. This would help us to
better understand concurrent software and give more effective analyses.
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