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Abstract. Separation logic (SL) is a widely used formalism for verifying heap
manipulating programs. Existing SL solvers focus on decidable fragments for
list-like structures. More complex data structures such as trees are typically un-
supported in implementations, or handled by incomplete heuristics. While com-
plete decision procedures for reasoning about trees have been proposed, these
procedures suffer from high complexity, or make global assumptions about the
heap that contradict the separation logic philosophy of local reasoning. In this pa-
per, we present a fragment of classical first-order logic for local reasoning about
tree-like data structures. The logic is decidable in NP and the decision proce-
dure allows for combinations with other decidable first-order theories for reason-
ing about data. Such extensions are essential for proving functional correctness
properties. We have implemented our decision procedure and, building on earlier
work on translating SL proof obligations into classical logic, integrated it into
an SL-based verification tool. We successfully used the tool to verify functional
correctness of tree-based data structure implementations.

1 Introduction

Separation logic (SL) [30] has proved useful for building scalable verification tools
for heap-manipulating programs that put no or very little annotation burden on the
user [2,5,6,12,15,40]. The high degree of automation of these tools relies on solvers for
checking entailments between SL assertions. Typically, the focus is on decidable frag-
ments such as separation logic of linked lists [4] for which entailment can be checked
efficiently [10, 31]. Although there exist expressive decidable SL fragments that sup-
port complex data structures such as trees [18], these fragments have very high com-
plexity. Therefore, reasoning about tree data structures is mostly unsupported in actual
implementations, or handled by incomplete heuristics [29, 35]. This raises the question
whether a practical and complete entailment procedure for SL of trees can be realized.

Contributions. In this paper, we give a positive answer to this question. Our solution
builds on our earlier work on reducing entailment checking in separation logic to sat-
isfiability checking in classical first-order logic [32]. Our main technical contribution
therefore lies in the identification of a fragment of first-order logic that (1) supports
reasoning about mutable tree data structures; (2) is sufficiently expressive to serve as
a target of our SL reduction; and (3) is decidable in NP. We call this logic GRIT (for
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Graph Reachability and Inverted Trees). The decision procedure for GRIT exploits lo-
cality of an axiomatic encoding of the logic’s underlying theory and reduces satisfiabil-
ity of GRIT formulas to satisfiability in effectively propositional logic (EPR). The latter
is automated using an SMT solver. One advantage of this approach is that it allows for
combinations with other decidable first-order theories. We therefore study several de-
cidable extensions of our basic logic that utilize such combinations to support reasoning
about data values stored in trees (e.g., sortedness constraints).

We have implemented our decision procedure on top of the SMT solver Z3 [11] and
integrated it into our SL-based verification tool GRASShopper [33]. We successfully
used the tool to automatically verify memory safety and consistency properties of tree-
based data structures such as skew heaps and binary search trees. We have further used
the tool to verify functional correctness of a tree-based set data structure and a union-
find data structure. Proving such strong functional correctness properties often requires
user-provided hints in the form of intermediate lemmas. However, GRASShopper can
verify them completely automatically.

Related Work. The decision procedure for the target logic of our SL reduction draws
ideas from the efficient SMT-based techniques for reasoning about reachability in func-
tion graphs [19, 23, 36, 38]. These techniques can be generalized to logics of trees [39]
by viewing trees as inverted lists [3]. We make three important improvements over [39].
First, our logic does not make the global assumption that the entire heap forms a forest.
This is important because such global assumptions contradict the philosophy of sepa-
ration logic, where assertions express properties of heap regions rather than the entire
heap. In particular, such assumptions preclude the encoding of the frame rule, which
is crucial for enabling compositional program verification using separation logic. Sec-
ond, we greatly simplify the decision procedure presented in [39]. This simplification
turns a decision procedure that is mostly of theoretical interest into a procedure that is
efficiently implementable. Finally, we consider extensions for reasoning about data.

Most other known decidable logics for reasoning about trees rely on monadic second-
order logic (MSOL) [22, 37]. However, the high complexity of MSOL over trees lim-
its its usefulness in verification. There exist some other expressive logics that support
reachability in trees with lower complexity [8,13,17,41]. All these logics are still at least
in EXPTIME, and their decision procedures are given in terms of automata-theoretic
techniques, tableaux procedures, or small model properties. These can be difficult to
combine efficiently with SMT solvers. One exception is the STRAND logic [26], which
combines MSOL over trees with a data logic. There exists an implementation of a deci-
sion procedure for a decidable fragment of STRAND, which integrates MONA and an
SMT solver. While the complexity of this procedure is at least double exponential, it has
shown to be practically efficient [27]. However, similar to the logic in [39], STRAND
makes global assumptions about the structure of the heap and is therefore inappropriate
for an encoding of separation logic. Another orthogonal logic for reasoning about heap
structures and data is described in [7]. This logic is incomparable to GRIT because it
supports nested list structures but not trees, while GRIT supports trees but no nested
structures.

Other tools that have been used for proving functional correctness of linked data
structure implementations include Bedrock [9], Dafny [24], Jahob [42], HIP/SLEEK [29],
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1 struct Node { var d: int; var l, r: Node; ghost var p: Node; }
2

3 procedure extract max(rt, ghost pr: Node, implicit ghost C: set[int]) returns (nrt, max: Node)
4 requires bst(rt, pr, C) � rt � null;
5 ensures bst(nrt, pr, C z {max.d}) � acc(max);
6 ensures max.r � null ^ max.p � null ^ max.d P C ^ (@z P (C z {max.d})). z < max.d);
7 {
8 var c, m: Node;
9 if (rt.r != null) {

10 c, m := extract max(rt.r, rt);
11 rt.r := c;
12 return rt, m;
13 } else {
14 c := rt.l; rt.p := null;
15 if (c != null) c.p := pr;
16 return c, rt;
17 } }

Fig. 1. Extracting the node with the maximal value from a sorted binary search tree

and VeriFast [21]. While these tools can handle more programs and properties than
GRASShopper supports, they also require more user guidance, either in the form of
annotated ghost state or lemmas for discharging intermediate proof obligations.

Static shape analysis tools such as Forester [2] can automatically infer data structure
invariants, e.g., that a specific reference points to a sorted tree. However, they only
infer restricted properties about data stored in the heap and can usually not verify full
functional correctness of data structure implementations.

2 Motivating Example and Overview

We motivate our approach through an example of a procedure that extracts the node
storing the maximal value from a sorted binary search tree. The procedure and its spec-
ification are shown in Figure 1.

Specification. The extract max procedure takes as argument the root of a binary search
tree. The tree represents a set of integer values C, which is declared as an additional
ghost parameter of the procedure. The precondition of the procedure, denoted by the
requires clause, is an SL assertion that relates the two parameters using the inductive
predicate bst(rt,pr,C). This predicate describes a heap region that forms a sorted binary
search tree with root rt, parent node pr, and that stores the set of values C. We call
the heap nodes in the region that are described by an SL assertion the footprint of the
assertion. Note that the contract of extract max provides the implicit guarantee that the
procedure does not modify any allocated heap nodes that are outside of the footprint of
its precondition.

The predicate bst is defined as follows:

bstpx, y, Cq � x�null^ C�H_ pDDE. accpxq � bstpx.l, x,Dq � bstpx.r, x, Eq �
x.p � y � C�tx.duYDYE � @u P D. u   x.d � @u P E. u ¡ x.dq
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The atomic predicate acc(x) in the definition of bst represents a heap region that consists
of the single heap node x. That is, acc(x) means that x is in the footprint of the predicate.
Such SL assertions are combined to assertions describing larger heap regions using
spatial conjunction, denoted by ‘�’. Spatial conjunction asserts that the composed heap
regions are disjoint in memory. Hence, bst describes an actual tree and not a DAG. Note
that atomic assertions such as x � null only express constraints on values but describe
empty heap regions.

The procedure extract max returns a pair of nodes (nrt, max) where nrt is the new
root of the remaining tree, and max the node that has been removed. The postcondition,
denoted by the ensures clauses, states that the procedure indeed yields the modified
tree with the maximal node max properly removed.

One important detail in the contract of extract max is the keyword implicit in the dec-
laration of the ghost variable C. This annotation means that C is existentially quantified
across the procedure contract. That is, we do not need to explicitly provide the actual
value of C at call sites to extract max, such as the recursive call on line 10. Instead, the
verifier will automatically infer the existence of the actual value and use it when assum-
ing the postcondition. This is in contrast to most other automated verification systems,
which do not support implicit ghost parameters. However, to make our approach for
reasoning about trees work, we do require the program to be annotated with ghost par-
ent pointers. These must be updated along with the forward pointers that span the trees.
We argue in the companion report [34] that in many cases these annotations with ghost
parent pointers can be inferred automatically using simple heuristics.

Verification. The actual verification of extract max involves a sequence of transforma-
tions that progressively make the semantics of separation logic explicit until we obtain
a program in which all contracts are expressed in GRIT. The logic is closed under ver-
ification condition (VC) generation, and the generated VCs are then discharged using
the decision procedure that we present in Sec. 5. The transformation includes the trans-
lation of SL assertions into first-order logic, the encoding of the semantics of SL Hoare
triples by making the footprints of procedure contracts explicit, the insertion of checks
for memory safety and absence of memory leaks, etc. The details of these transforma-
tions are described in our previous work [32, 33]. In the following, we only provide an
abridged summary.

GRIT. The GRIT logic can express properties of sets of heap nodes using set operations
and certain forms of set comprehensions. The logic further provides predicates that
describe the structure of the heap. For example, the GRIT predicate TreepS, x, y, l, r, pq
expresses that the heap region described by the set S forms a tree with root x, parent
node y, left pointer field l, right pointer field r, and parent pointer field p. Another
important predicate is the reachability predicate Rpf, x, yq, which expresses that x can
reach y by following the pointer field f in the heap. The logic also provides special
constructs for expressing updates of pointer fields and frame conditions of procedure
calls. Specifically, the frame predicate FramepS, F, f, f 1q expresses that the values of
the pointer fields f and f 1 agree on the heap nodes in the set SzF .

Reduction to GRIT. We next explain how we reduce the problem of checking verifica-
tion conditions with SL assertions to checking satisfiability of GRIT formulas. To this
end, consider the path of extract max that goes through the “then” branch of the condi-
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S � S1YS2 ^ S1 � tx. Rpp, x, rtqu ^ S2 � H^ footprint of precondition
TreepS1, rt, pr, l, r, pq ^ rt � null^ S1XS2�H^ precondition

rt.r � null^ line 9
F � F1YF2 ^ F1 � tx. Rpp, x, rt.rqu ^ F2 � H^ initial footprint of rec. call

F � F 1

1 Y F 1

2 ^ F 1

1 � tx. Rpp1, x, cqu ^ F 1

2 � tmu ^ final footprint of rec. call
TreepF1, c, rt, l1, r1, p1q ^m.r1�m.p1�null^ F 1

1XF 1

2�H^ postcondition of rec. call
FramepS, F, l, l1q ^ FramepS, F, r, r1q ^ FramepS, F, p, p1q ^ frame condition of rec. call

r2 � writepr1, rt, cq ^ line 11
nrt � rt^max � m^ line 12

S1 � S1

1YS1

2 ^ S1

1 � tx. Rpp2, x, nrtqu ^ S1

2 � tmaxu ^ footprint of postcondition
 pTreepS1

1, nrt, pr, l1, r2, p2q ^max.p2 � null^max.r2 � null^
S1

1XS1

2 � H^ S1 � Sq
negated postcondition

Fig. 2. Verification condition for a path of extract max with simplified pre and postconditions

tional on line 9 to the return point on line 12. Our goal is to check that the postcondition
of extract max holds after this path has been executed, assuming the precondition holds
initially. For exposition purposes, we consider the simplified precondition tree(rt,pr) �
rt � null and the simplified postcondition

tree(nrt,pr) � accpmaxq � pmax.r � null^max.p � nullq

That is, we abstract from the data values by defining the predicate tree as follows:

treepx, yq � x � null_ accpxq � treepx.l, xq � treepx.r, xq � x.p � y

The VC that is obtained from the simplified contract of extract max and the con-
sidered path reduces to the GRIT formula shown in Fig. 2. This formula is unsatisfiable
and thus the obtained VC is valid. We next explain this GRIT formula in more detail.
Translation of SL Assertions. The reduction to GRIT translates each SL assertion into
a conjunction of two GRIT formulas: one formula that describes the footprint of the SL
assertion, and another formula that describes the structure of the heap region captured
by the assertion. The generation of the footprint formula proceeds recursively on the
structure of the SL assertion, introducing auxiliary set variables to represent the foot-
prints of all spatial conjuncts. These auxiliary set variables are implicitly existentially
quantified, capturing the semantics of spatial conjunction. For example, in Fig. 2, the
footprint of the precondition is described by the set S, which is itself the disjoint union
of the sets S1 and S2. Here, S1 represents the actual footprint of the tree rooted in rt.
The variable S1 is defined as the set of all nodes that can reach rt via the parent field
p. S2 is the footprint of the SL assertion rt � null. Note that the defining formula for
the footprint S1 of the negated postcondition is pulled over the negation. Yet, we do
not introduce universal quantifiers for the set variables S1

1 and S1
2 in the negated post-

condition. The dualization of the universal quantifiers for the auxiliary set variables is
possible because these variables are uniquely defined by the translated SL assertions.
We refer the reader to the companion tech report [34] for the details of how to translate
SL assertions with tree predicates to GRIT.
Implicit Frame Inference. The recursive call to extract max on line 10 is handled
by assuming the translated postcondition of the call and the defining formula of the
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footprint F of the call’s precondition. The latter is used to express the call’s frame
condition using the predicate Frame. Note that the actual frame SzF , i.e., the set of
heap nodes that are not touched by the recursive call, is automatically inferred by the
decision procedure of GRIT from the defining formulas of the footprint sets S and F .

3 Graph Reachability and Stratified Sets

Our reduction of separation logic to first-order logic decomposes SL assertions into
constraints on the shape of the heap and constraints on the footprint sets. The crux in
this translation is the handling of inductive predicates such as bst and tree. To avoid
the need for reasoning about induction, both the shape constraints and the footprint
sets are expressed in terms of reachability over pointer fields in the heap. To support
such an encoding, we define a first-order logic of graph reachability and stratified sets
(GRASS). This logic can express structural properties of mutable finite graphs as well as
sets of nodes in these graphs. The general GRASS logic is undecidable. The logic GRIT,
which we formally introduce in the next section, then imposes syntactic restrictions on
GRASS that will ensure decidability while being sufficiently expressive to serve as a
target for our reduction of separation logic over trees.

We follow standard notation and conventions for syntax and semantics of many-
sorted first-order logic with equality. The signature of the GRASS logic is ΣGS �
pSGS , ΩGS , ΠGSqwhere SGS � tnode, field, setu is the set of sorts. The set of function
symbols ΩGS consists of the symbols null : node, read : field� node Ñ node, write :
field � node � node Ñ field, and a countable infinite set of constant symbols for each
sort in SGS . The constant symbol null is a dedicated constant symbol of sort node that
we use to represent null pointers. The set of predicate symbols ΠGS consists of the
symbols B : field � node � node � node and P: node � set. The GRASS logic then
comprises all first-order formulas over the signature ΣGS .

We define the semantics of GRASS formulas with respect to a theory TGS of first-
order structures over ΣGS . A structure A is in TGS iff the following conditions are
satisfied. First,A interprets the sort node by a finite set nodeA. The interpretation of the
remaining sorts and symbols, with the exception of constant symbols, is then uniquely
determined by the interpretation of nodeA as follows. First, the sort field is interpreted
by the set of all functions in nodeA Ñ nodeA, and the sort set by the set of all subsets
of nodeA. We consider the elements of nodeA to represent nodes in a heap graph and
the elements of fieldA pointer fields. The function symbols read and write represent
field look-up and field update. They must satisfy the following properties

@u P nodeA, f P fieldA. readApf, uq � p if u � nullA then u else fpuqq and

@u, vPnodeA, f PfieldA. writeApf, u, vq � λw P nodeA. if w�u then v else fApwq

The between predicate Bpf, x, y, zq denotes that x reaches z via an f -path that must
go though y. To formally define the semantics of B, we note that for a binary relation
r over a set X (respectively, a unary function r : X Ñ X), we denote by r� the
reflexive transitive closure of r. Furthermore, for f P fieldA we define fA � λu P
nodeA. readApf, uq. Then for all u, v, w P nodeA and f P fieldA we require

BApf, u, v, wq ô pu,wq P f�A ^ pu, vq P tpu1, fApu1qq | u1 P nodeA ^ u1 � wu�
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x : node variable, t : node constant, S : set constant, Fld P tP, L, Ru, f P Fld
T ::� x | t | null | readpf, T q TFld ::� f | writepTFld, T, T q

A ::� T � T | TFld � TFld | BpTP , T, T, T q | T P S R ::� A |  R | R^R

F@ ::� @x.R where the variables x do not occur below read or write in R

F ::� A | F@ | TreepS, T, TL, TR, TP q | FramepS, S, TFld, TFldq |  F | F ^ F

Fig. 3. Logic of graph reachability and inverted trees (GRIT)

The second conjunct states that u reaches v without going through w. Finally, the inter-
pretation of the set membership relation P inA is as expected. We define the reachability
predicate Rpf, x, yq as a short-hand for Bpf, x, y, yq.

4 The GRIT Logic

We now introduce the logic of graph reachability and inverted trees (GRIT). In our
formal treatment, we restrict ourselves to the case of binary trees. However, the logic
and decision procedure can be easily generalized to trees of arbitrary bounded rank. We
do not discuss the case of unranked trees. Surprisingly, the treatment of unranked trees
is much simpler than the bounded case.
Syntax. Figure 3 defines the syntax of GRIT formulas. A GRIT formula F is a Boolean
combination of atomic formulas A, restricted quantified formulas F@, tree predicates
TreepS, t, l, r, pq, and frame predicates FramepA,S, f, f 1q. The atomic formulasA form
a subset of the atomic formulas of GRASS. Namely, we partition the constant symbols
of sort field into three disjoint sets: a set of parent fields P , a set of left successor
fields L, and a set of right successor fields R. Equalities between terms of sort field
are then restricted to terms that are built from field constants in the same partition.
To ensure decidability of the logic, we do not allow quantification over formulas that
contain terms in which node variables appear below the function symbols read and
write, as in readpp, xq. Also, we restrict the reachability predicate B to parent fields.
This restriction yields a much simpler and more practical decision procedure compared
to the logic proposed in [39]. We assume that all GRIT formulas are closed.
Syntactic Short-hands. Throughout the remainder of the paper, we will use syntactic
short-hands for disjunction, implication, bi-implication, and existential quantification
in GRIT formulas. Further note that we can express standard set operations such as
union and intersection using restricted quantified GRIT formulas and fresh auxiliary set
constants. For example, the formula t R S Y T stands for the GRIT formula

 pt P S1q ^ @x. x P S1 ô x P S _ x P T

where S1 is a fresh set constant. Set equality, subset inclusion, and set comprehensions
can be expressed similarly. To ease the notation, we will use the expected syntactic
short-hands for such encodings. Finally, we write t.f to mean readpf, tq.
Semantics. GRIT formulas are interpreted in the models of the theory TGS , which we
have defined in the previous section. Thus, we only need to provide the semantics of the
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predicates Tree and Frame. We define the semantics of these predicates in terms of for-
mulas in our general graph reachability logic with stratified sets. The defining formulas
are chosen in such a way that we obtain a simple and efficient decision procedure by
first expanding the predicates with their defining formulas and then applying quantifier
instantiation techniques. In the following, let A be a structure in TGS .

As we have seen in Sec. 2, the tree predicate is crucial for the translation of SL tree
predicates such as tree. A tree predicate TreepS, t, l, r, pq holds true in A if A contains
a tree with footprint S, root t, spanned by the given fields l, r, and p. Our formal
definition of Tree, which we provide below, uses the reachability predicates to give a
noninductive definition of trees. Formally,A satisfies TreepS, t, l, r, pq iff the following
formula holds in A:

t � null^ S � H _ (1)
@x, y. x P S ^ y P S ^ Rpp, x, yq ^ Rpp, y, xq ñ x � y ^ (2)
@x. x P S ñ x.l � null_ Rpp, x.l, xq ^ (3)
@x, y. x P S ^ Bpp, x.l, y, xq ñ y � x.l _ y � x ^ (4)
@x. x P S ñ x.r � null_ Rpp, x.r, xq ^ (5)
@x, y. x P S ^ Bpp, x.r, y, xq ñ y � x.r _ y � x ^ (6)
@x, y. y P S ^ Rpp, x, yq ñ x � y _ Bpp, x, y.l, yq _ Bpp, x, y.r, yq ^ (7)
@x. x P S ^ x.l � x.r ñ x.l � null ^ (8)
@x. x P S ñ x.l � x^ x.r � x ^ (9)
@x. x P S ô Rpp, x, tq (10)

The first disjunct (1) defines the structure of an empty tree and the second disjunct the
structure of nonempty trees. We explain the conjuncts (2)-(10) in the second disjunct in
more detail. The conjunct (2) ensures that the set S does not contain nontrivial p cycles.
The conjuncts (3)-(7) express that on S the field p is the inverse of l and r. Specifically,
(3) and (4) together are equivalent to the formula @x.x P S ñ x.l � null_ x.l.p � x.
Using reachability constraints to express this property rather than field reads yields a
simpler and more efficient decision procedure. Conjunct (8) expresses that fields l and
r must not point to the same nodes on S, unless they both point to null. Conjunct (9)
expresses that l and r do not have self-loops on S. Finally, conjunct (10) defines the
footprint S as the set of all nodes that can reach t via the parent field.

The frame predicate FramepA,S, f, f 1q expresses that the fields f and f 1 coincide
when they are restricted to the nodes in the setAzS. In our formal definition of the frame
predicate, we distinguish between parent fields and successor fields. For successor fields
f, f 1 P L (respectively R), we define FramepA,S, f, f 1q by the GRASS formula

@x.x P AzS ñ x.f � x.f 1 (11)

For parent fields p, p1 P P , it is not sufficient if the frame predicate states that the fields
p and p1 coincide on the set AzS. Instead, we also need to ensure that all information
contained in the reachability predicate B for the two fields is consistent on this set. For
parent fields p, p1, we therefore define FramepA,S, p, p1q by the formula

@x, y, z.x P AzS ñ pBpp, x, y, zq ô Bpp1, x, y, zqq (12)
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Note that the formula (12) is stronger than formula (11). In fact, we are only allowed
to use formula (12) for the encoding of the frame rule if we make sure that the set S
is parent-closed. That is, for all nodes t, t1, if t P S and Rpp, t1, tq, then t1 P S. This
holds in particular if S is the footprint of an SL tree predicate whose parent field is p.
There exists a more general treatment of the frame predicate that preserves reachability
information and does not make assumptions about the set S. The details can be found
in [20, 33]. Since the footprints of tree manipulating programs are typically defined
by tree predicates and hence parent-closed, we stick to the simpler definition given by
formula (12).

5 Decision Procedure for GRIT

We next describe the decision procedure for the satisfiability problem of GRIT. In the
following, let F be a GRIT formula. The decision procedure works in two phases: the
first phase reduces F to an equisatisfiable GRASS formula F 1. The second phase re-
duces F 1 to an equisatisfiable formula in effectively propositional logic (EPR), which
is then checked using an EPR decision procedure. The EPR fragment, also known as
the Bernays-Schönfinkel class, consists of formula of the form Dx@yϕpx,yq where ϕ
is quantifier-free and does not contain function symbols. Satisfiability of EPR formulas
can be decided in NEXPTIME and reduces to NP, if the number of universally quanti-
fied variables is bounded [25].

The first phase of the reduction involves the following sequence of steps:

1. Substitute all occurrences of the predicates Tree and Frame in F by their defining
formulas given in Sec. 4. The resulting formula is a GRASS formula F1.

2. Convert F1 into negation normal form, yielding F2.
3. Replace every literal of the form pf � f 1q in F2, where f and f 1 are terms of sort

field, by the formula Dx. preadpf, xq � readpf 1, xqq. The resulting formula is F3.
4. Skolemize F3, yielding F 1.

Clearly, each of these transformation steps produces an equisatisfiable formula with re-
spect to the theory TGS . Note that the Skolemization step only introduces fresh Skolem
constants of sort node.

Next, conjoin F 1 with the theory axioms defining the predicate B and the functions
read and write for the theory TGS . The axiom defining the predicate B are obtained from
the inference rules in the decision procedure proposed in [23]. The axioms defining
the functions read and write are McCarthy’s well-known read over write axioms for
arrays [28]1. We denote the resulting formula by G.

All the remaining quantifiers in G are universal quantifiers. The final step of the
reduction is to instantiate all those universally quantified variables in G that appear be-
low function symbols. The resulting formula is then in EPR (modulo function symbols
appearing in ground terms, which can be eliminated using Ackermann reduction). The
quantifier instantiation step exploits the careful design of the defining formulas of the
tree and frame predicates, as well as the restrictions on the quantified formulas that are

1 The complete list of all axioms can be found in the companion tech report [34].
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allowed to appear in the input formula F . These restrictions guarantee that the resulting
quantified constraints can be viewed as a so-called Ψ -local theory extension [16]. That
is, it is sufficient to instantiate the variables below function symbols in G with a finite
set of ground terms T that we can compute from G. Suppose that GrT s is the resulting
EPR formula. The completeness argument for the reduction to EPR works by proving
that each model A of GrT s can be embedded into some structure in TGS that satisfies
F 1. Specifically, we need to be able to construct actual binary trees in those regions of
A that have been constrained by tree predicates. This construction must preserve the
cardinality of model A for the resulting structure to satisfy F 1 and hence F .

To this end, let TG be the set of all ground terms appearing in G, and let PF be
the set of all positive ground literals appearing in F . To ensure that each tree region
TreepS, t, l, r, pq P PF contains sufficiently many nodes to construct a binary tree, we
use the idea from [39] to introduce an auxiliary function fca that denotes the first com-
mon ancestor of two nodes with respect to the parent field p and footprint set S. We
define this function using the following axioms:

@x, y. Rpp, x, tq ^ Rpp, y, tq ñ Rpp, x, fcapp, x, yqq
@x, y. Rpp, x, tq ^ Rpp, y, tq ñ Rpp, y, fcapp, x, yqq
@x, y, z. Rpp, x, tq ^ Rpp, y, tq ^ Rpp, x, zq ^ Rpp, y, zq ñ Rpp, fcapp, x, yq, zq
@x, y, z, w. Rpp, w, tq ^ fcapp, x, yq � w ^ fcapp, x, zq � w ^ fcapp, y, zq � w ñ

x � y _ x � z _ y � z _ w � null

For each atom TreepS, t, l, r, pq P PF , conjoin these axioms with G to obtain G1.

r

x y z
(a) spurious model

r

x y
z

fca(p,x,y)

(b) model with
fcapp, x, yq

Fig. 4. Role of the fca

Next, we define the set of ground terms T , which we use for
the instantiation, as the least set of ground terms that satisfies
the following properties:

– TG � T
– if t.l P T and TreepS, c, l, r, pq P PF then t.r P T
– if t.r P T and TreepS, c, l, r, pq P PF then t.l P T
– if t.f P T and f � f 1 P PF then t.f 1 P T
– if t.f P T and FramepA,S, f, f 1q P PF then t.f 1 P T
– if t.f P T and FramepA,S, f 1, fq P PF then t.f 1 P T
– if t.writepf, u, vq P T then t.f P T
– if t.f P T and writepf, u, vq P T then t.writepf, u, vq P T
– if writepf, u, vq P T then u.writepf, u, vq P T
– if t P T , t1 P T , TreepS, c, l, r, pq P PF , and neither t nor
t1 contain fca then fcapp, t, t1q P T

It is easy to see that T is polynomial in the size of TG.
Let A be a universally quantified first-order formula. We

denote by ArT s the conjunction of all instances I of A that satisfy the following prop-
erties: I is obtained from A by instantiating all quantified variables of A that appear
below function symbols with terms of matching sort in T . Moreover, all ground terms
appearing in I are already in T . For example, if A is of the form @x.A1pfpxqq and
t P T then A1pfptqq is in ArT s only if fptq P T . Now, let G1rT s be the formula that is
obtained by substituting all universally quantified subformulas A in G1 by ArT s.
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By construction, the formulaG1rT s is satisfiable if the input formula F is satisfiable
modulo the theory TGS . Hence, our decision procedure is sound. To prove complete-
ness, let A be a model of G1rT s. Define the partial structure A|T by restricting the
interpretation of the sort node in A to the set t tA | t P T u. Let PModpG1rT sq be
the set of all such partial structures for G1rT s. Then the following lemma implies the
completeness of our decision procedure.

Lemma 1. Let AT P PModpG1rT sq. Then AT can be completed to a structure A P
TGS that satisfies G.

The crucial observation in the proof of Lemma 1 is that the addition of fca ensures
that in the partial models AT , for every tree node t, there are at most two other nodes
which can reach t directly via the parent field, i.e., without visiting any other nodes.
Hence, these two nodes can be chosen as the direct left and right successors of t in the
model completion. We explain the importance of the first common ancestor terms for
the completeness of the decision procedure through an example.

Example 1. Consider the following unsatisfiable formula:

TreepS, t, l, r, pq ^ S � tx, y, z, tu ^ S � tw.Rpp, w, tqu ^  Rpp, x, yq^
 Rpp, x, zq ^  Rpp, y, xq ^  Rpp, y, zq ^  Rpp, z, xq ^  Rpp, z, yq

The formula is unsatisfiable because the nodes x, y, z and t cannot be arranged in a
binary tree without adding auxiliary nodes to the tree (which violates the definition of
S) or making at least two of x, y, z mutually reachable via p. Without the first common
ancestor, the reduced formula produced by the decision procedure would admit the
model shown in Fig. 4 (a). This happens because the original formula does not contain
any l or r terms to trigger the instantiation of the quantifiers in the defining formula
of Tree. However, with the additional fca terms and axioms, the instantiated formula
implies that the tree must contain at least one additional node, as indicated in Fig. 4 (b).
This yields the contradiction.

By construction, G1rT s is an EPR formula whose size is polynomial in the input
formula F . It thus follows that the satisfiability problem for the quantifier-bounded
fragments of GRIT is in NP. Since NP-hardness is immediate we obtain the following
complexity result.

Theorem 1. The satisfiability problem for the quantifier-bounded fragments of GRIT is
NP complete.

6 Extensions

In this section, we discuss several extensions of GRIT to support reasoning about trees
and data. Such extensions are needed, for instance, to prove that a binary search tree is
sorted. In general, it is possible to extend the logic with additional axioms about data as
long as they preserve the locality properties that underpin the axiomatization of GRIT.
We present extensions with data that we used in our experimental evaluation and we
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provide some general principles how to design such extensions. The extensions that we
discuss preserve the decidability and complexity of GRIT.

To support reasoning about data, we extend the signature of GRIT with an additional
sort data for data values, fields from node to data, and sets with data elements. The
read and write functions are extended as expected. In the following, we let d range
over data fields. In our implementation, we interpret the data sort in the theory of linear
integer arithmetic. However, we can combine GRIT with any decidable quantifier-free
first-order theory that is signature disjoint from GRIT and stably-infinite to interpret the
data sort. The extensions that we discuss build on such quantifier-free combinations.

We consider three categories of extensions with data: monadic predicates on node,
binary predicates on node, and projections of node sets to data sets.

Monadic predicates. Properties such as upper and lower bounds on the values con-
tained in a tree are expressible using monadic predicates. Such formulas have the fol-
lowing form: @x. x P S Ñ Qpx.dq where Q is a predicate over data and S a node set.
One example of such a predicate is the ensures clause on line 6 in Fig. 1.

Monadic predicates also form Ψ -local theory extensions. To support such exten-
sions, the set T of ground terms for the quantifier instantiation must additionally satisfy:

– if d P T and t P T then t.d P T

For each ground node term t P T , we add a ground term that reads t’s data. The com-
pleteness of this instantiation follows from results about axioms satisfying stratified sort
restrictions [1].

Binary predicates. To define a sorted tree or a heap, we need to relate the data of a node
to the data of its children. The following properties are examples of binary predicates:

– heap property: @x, y P S. Rpp, x, yq ñ x.d ¤ y.d

– sorted tree (left subtree): @x, y P S. Bpp, x, y.l, yq ñ x.d   y.d

Here, we assume that S is the footprint of a tree. To ensure completeness of the decision
procedure for such predicates, we first check that the relation on nodes is transitive.
Without transitivity, the property cannot be generalized from direct successors in a tree
to an entire path in that tree, and Lemma 1 does not hold anymore. Transitivity prevents
us from expressing properties that require counting, but still allows ordering relations.

The case of the heap property is simple since it satisfies a stratified sort restriction. It
does not require any additional treatment beyond the addition of data ground terms as in
the case of monadic predicates. On the other hand, the sortedness property is more inter-
esting because the variable y appears in a read term. Thus, instantiating the axiom can
potentially generate new terms. However, our decision procedure performs only local
instantiation. To obtain completeness we need to ensure that we have sufficiently many
left and right successor terms. Therefore, the set T of ground terms must additionally
satisfy:

– if fcapp, t1, t2q P T and TreepS, c, l, r, pq P PF then fcapp, t1, t2q.l P T and
fcapp, t1, t2q.r P T .
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Note that the axioms for the first common ancestor and the defining formula of Tree
together imply that the following holds for all nodes x and y in a partial model:

fcapp, fcapp, x, yq.l, fcapp, x, yq.rq � fcapp, x, yq

The additional terms ensure that all nodes in a tree are assigned to the left, respectively,
right subtrees of the first common ancestor nodes, enforcing sortedness across the tree.
Set projection. Lastly, we consider a way of referring to the content of a data structure.
This class of extensions enables reasoning about functional correctness properties. In
common cases such as implementations of sets, the content is obtained by projecting
the footprint onto a data field. For instance, given the footprint S of a data structure, the
content C can be defined as C � tv | Dx P S. v � x.du.

This definition does not directly fit into our logic, due to the existential quantifier
inside the set comprehension. We replace this quantifier by a Skolem function which
we call witness . The witness function maps an element c of C back to a node in S that
stores c. The values not in C are mapped to null. witness is axiomatized as follows:

@x.x P S ñ x.d P C
@v.v P C ñ witnesspd, v, Cq P S ^ v � witnesspd, v, Cq.d
@v.v R C ñ witnesspd, v, Cq � null

The witness function maps the data values back to nodes. Therefore, it does not respect
the stratification restriction used to prove the Ψ -locality of the monadic extensions. For
completeness, the set of terms T needs to additionally satisfy:

– if d P Tdata and v, C P T then witnesspd, v, Cq,witnesspd, v, Cq.d P T

The axioms are local since witness is the inverse of d. Hence, reading the data of a
witness gives a value which is already in the set of ground terms.

The set implementations which we used in our experiments do not store duplicate
elements and witness becomes the one-to-one inverse of the data field. In such cases,
we strengthen the above axioms with @x. x P S ñ x � witnesspd, x.d, Cq.
Limitations. As mention earlier, there is no precise characterization of the limit of
extensions that preserve the locality properties on which our decision procedure is built.
However, not all extensions are local. For example, the following relation between a
parent and child node does not generalize to reachability: @x, y P S. x.p � y ñ x.d �
y.d� 1. Therefore, the height of a tree cannot be expressed.

7 Implementation and Evaluation

Implementation. We have extended our tool GRASShopper with the decision proce-
dure for tree data structures storing integer values. The tool is implemented in OCaml
and available under a BSD license. The source code distribution including all bench-
marks can be downloaded from the project web page [14]. GRASShopper takes as input
an annotated C-like program and generates verification conditions which are checked
using Z3 [11]. Annotations include procedure contracts and loop invariants expressed in
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a mixed specification language that supports both SL and GRASS assertions. The tool
automatically adds checks to ensure that there are no memory safety violations such as
accesses to unallocated memory, memory leaks, double frees, etc.

Currently, all annotations with ghost parent pointers must be manually provided. We
plan to extend GRASShopper to automatically infer these annotations. For example,
each modification of a forward successor field induces a matching modification of the
parent field. Furthermore, a procedure that takes the root of a tree as parameter must be
augmented with an additional ghost parameter for the parent of the root. The companion
report [34] contains more information on how to automate these steps.

To handle dynamic memory allocation we require that the parent of all unallocated
nodes points to null and that all nodes eventually reach null via parents. These restric-
tions are not harmful because outside of trees we can choose the parents arbitrarily.

The translation of SL tree predicates into GRIT is currently hard-coded into the
implementation of the tool. The first-order specifications of common properties and
features such as sortedness and content sets are provided as predefined building blocks.
Using these building blocks, adding support for a new data structure requires about
10 lines of code. We plan to implement a heuristic translation of SL tree predicates to
GRIT. The tool already provides such a heuristic for list data structures. GRASShopper
also incorporates optimizations and sparser term generation. For instance, we do not
currently generate the fca terms. This source of incompleteness proved irrelevant in
our examples. In every example, the data structure is traversed along the left and right
successor nodes which ensures that sufficiently many ground terms are already present.

Evaluation. We have used GRASShopper to verify complex properties of various data
structure implementations. The results of our experiments are summarized in Table 1.
For each procedure, the table lists the number of lines of code, lines of specification,
lines of ghost annotations, the number of generated verification conditions, and the total
running time of the tool. All examples in the table have been successfully verified. The
number of lines of code does not include specifications or ghost state. The specifications
include contracts and loop invariants. The ghost annotations include annotations that are
needed to express the specification (e.g., implicit ghost parameter), or proof automation
(e.g., updates of ghost fields). We now describe our experiments in more detail.

First, we used GRASShopper to prove functional correctness of set data structures
that store integer values. We considered implementations based on binary search trees
and sorted lists. The experiments with lists show that the extension we present for GRIT
are applicable across different data structure types. We further verified a union-find
data structure. We looked at the data structure from two different perspectives. One
perspective views them as shared lists, the other as unranked inverted forests. Each
perspective allows us to prove different properties of the implementation. Using the tree
view, we proved functional correctness, e.g., that the union operation indeed merges the
equivalence classes associated with two given pointers into the data structure. The list
view allows us to reason about single paths from a node n in the data structure to the
root node of the tree that n belongs to (i.e., the representative of that equivalence class).
Using the list view, we proved the correctness of path compaction in the find operation.

We have also considered other tree data structures for which we have proved the
preservation of structural invariants under the data structure operation but not full func-
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Data structure Procedure #L. Code #L. Spec #L. Ghost # VCs time in s

set as binary tree
functional correctness

contains 17 3 3 9 3
destroy 8 2 2 7 1

extract max 14 5 3 9 20
insert 24 2 3 15 61

remove 33 2 11 35 117
rotate left 8 3 4 11 15

rotate right 8 3 4 11 14
traverse 7 2 3 5 9

set as sorted list
functional correctness

contains 15 7 6 4 1
delete 26 7 6 8 12

difference 20 3 1 15 13
insert 25 7 6 8 69

traverse 12 7 6 2 0.1
union 20 3 1 15 15

union-find (tree-view)
functional correctness

find 12 2 1 4 0.2
union 10 3 1 4 0.3
create 11 3 0 3 0.1

union-find (list-view)
path compaction

find 12 3 1 4 0.1
union 9 7 1 4 3
create 10 1 0 3 0.1

skew heap
shape, heap property

insert 17 2 2 7 0.3
union 11 2 4 12 35

extract max 9 2 1 11 6
Table 1. Verified data structures

tional correctness of these operations. In particular, we have proved that skew heap op-
erations respect the heap property, i.e., that the data value of a child node is not greater
than its parent’s value. Skew heaps are typically used to implement priority queues. At
the moment, we cannot prove functional correctness of this data structure because our
tool does not yet support reasoning about the theories that are needed for specifying the
priority queue operations (e.g., multisets or sequences).

8 Conclusions

We have presented a new approach for automated verification of programs that manip-
ulate heap-allocated data structures. The approach is based on a decidable fragment of
first-order logic that supports reasoning about mutable finite graphs and can express that
certain subgraphs form trees. The logic makes no global assumptions about the struc-
ture of its graph models such as that the entire graph is a forest. This allows us to use
the logic for automated reasoning about separation logic of trees. Furthermore, we have
studied extensions of our graph logic for reasoning about data stored in heap structures.
We used these extensions to automatically verify complex properties (including full
functional correctness) of tree data structures such as binary search trees, skew heaps,
and union-find. In the future, we will investigate how to extend our techniques to reason
about nested data structures that combine trees, lists, and arrays.
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