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Coin game (How large can a finite Petri net
get?)
We define a strategy for 𝑁 buckets. Let 𝑓(𝑁) be the number of coins we get
with this strategy.

We keep the coin in bucket 1 that is initially containted in it and apply
our strategy to the remaining 𝑁 − 1 buckets. This results in the game state
(1, 0, … , 𝑓(𝑁 − 1)). Now we spend the coin in bucket 1 to apply action 2:
𝑠𝑤𝑎𝑝(1, 2, 𝑁), resulting in state (0, 𝑓(𝑁 − 1), 0, … , 0).

For this we define another strategy, which takes a game in state (𝑛, 0, … , 0)
with 𝑚 buckets. Let 𝑔(𝑚, 𝑛) be the number of coins resulting from this strat-
egy. Therefore 𝑓(𝑛) = 𝑔(𝑛−1, 𝑓(𝑛−1)). For this second strategy, in the first
step our only option is to take one coin from the first bucket and put 2 in the
next, resulting in state (𝑛−1, 2, 0, … , 0). Now we apply the strategy for 𝑚−1
buckets, which leads to state (𝑛−1, 0, … , 𝑔(𝑚−1, 2)) and use 𝑠𝑤𝑎𝑝(1, 2, 𝑚),
which gives us state (𝑛 − 2, 𝑔(𝑚 − 1, 2), 0, … ). At this point we can apply
the same strategy recursively 𝑛 times, so 𝑔(𝑚, 𝑛) = 𝑔(𝑚 − 1, 𝑔(𝑚, 𝑛 − 1)).

As a basis for the two recursions, we know that 𝑓(1) = 1, 𝑓(2) = 3, 𝑓(3) =
7, which can easily be shown by looking at all possible actions, 𝑔(𝑚, 1) =
𝑔(𝑚 − 1, 2), because with one coin we cannot do the swap action for the
next recursion step, so we only have two coins we get by using action 1, and
𝑔(2, 𝑛) = 2𝑛, since the only option with two buckets is to use action 1.

Theorem 1. 𝑔(𝑚, 𝑛) ≥ 2 ↑𝑚−2 𝑛

Proof by induction.

• 𝑚 = 3:
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Proof by induction.
𝑛 = 1:
𝑔(3, 1) = 𝑔(2, 2) = 2 ⋅ 2 = 4 ≥ 2 ↑1 2.

𝑛 → 𝑛 + 1:

𝑔(3, 𝑛 + 1) = 𝑔(2, 𝑔(3, 𝑛))
𝐼𝐻2
≥ 𝑔(2, 2 ↑1 𝑛) = 2 ↑1 (𝑛 + 1).

• 𝑚 → 𝑚 + 1:

Proof by induction.
𝑛 = 1:
𝑔(𝑚 + 1, 1) = 𝑔(𝑚, 2)

𝐼𝐻1
≥ 2 ↑𝑚−2 2 = 2 ↑𝑚−1 1.

𝑛 → 𝑛 + 1:

𝑔(𝑚 + 1, 𝑛 + 1) = 𝑔(𝑚, 𝑔(𝑚 + 1, 𝑛))
𝐼𝐻2
≥ 𝑔(𝑚, 2 ↑𝑚−1 𝑛)

𝐼𝐻1
≥ 2 ↑𝑚−2

(2 ↑𝑚−1 𝑛) = 2 ↑𝑚−1 (𝑛 + 1)

Theorem 2.
For any sequence of actions that uses inc(1) while (0, 2𝑛−2, 2𝑛−3, … , 2𝑛−𝑛)𝑆 ≥
4, where 𝑆 is the current state, there is another strategy that produces at least
as many coins and does not use inc(1) in such a situation, for 𝑛 ≥ 3 buckets.
Proof.
Suppose inc(1) is used in such a situation on state 𝑆. Choose 𝑖 > 1 mini-
mal with 𝑆𝑖 > 0. Then we can replace inc(1) by the following sequence of
operations:

• propagate all coins from bucket 1 to bucket 𝑛
• swap(1,2,n)

• leave 𝑆2 + 2 coins in bucket 2 and propagate the rest to bucket 𝑖
• leave 𝑆𝑖 coins in bucket 𝑖 and propagate the rest to bucket 𝑛

We show that the state obtained by applying this sequence of operations
covers this state obtained by applying inc(1). Therefore the remainder of the
original sequence of operations remains valid.
Bucket 1 has 1 coin less after both sequences of operations, bucket 2 has 2
additional coins and therefore the same number of coins in both cases, bucket
n has at least as many as in the other case and all other buckets have exactly
the same number of coins.
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• Case 𝑖 = 𝑛:
In this case we know that 𝑆𝑛 ≥ 4.
Then we have 𝑆′

2 = 𝑆𝑛, 𝑆′
𝑛 = 2𝑛−2(𝑆𝑛 − 2) ≥ 2(𝑆𝑛 − 2) ≥ 𝑆𝑛

• Case 𝑖 = 𝑛 − 1:
After the first propagation 𝑆′

2 = 𝑆′
𝑖 = 0, 𝑆′

𝑛 = 𝑆𝑛 + 2𝑛−𝑖𝑆𝑖. After
swapping and the second propagation, 𝑆″

2 = 2, 𝑆″
𝑖 = 2𝑖−2(𝑆𝑛+2𝑛−𝑖𝑆𝑖−

2) = 2𝑛−3(𝑆𝑛 + 2𝑆𝑖 − 2) = 2𝑛−3𝑆𝑛 + 2𝑛−2(𝑆𝑖 − 1).

– 𝑆𝑖 > 1:
Then 2𝑛−2(𝑆𝑖 − 1) ≥ 𝑆𝑖 and we propagate at least 2𝑛−3𝑆𝑛 coins
to bucket 𝑛, which will contain at least 4𝑆𝑛 ≥ 𝑆𝑛 coins.

– 𝑆𝑖 = 1:
Because this state was generated by a sequence of actions starting
from (1, … , 1), we have 𝑆𝑛 ≥ 2. We then propagate all but one
token from 𝑆𝑖 to 𝑆𝑛, where we will have 2(2𝑛−3𝑆𝑛−1) = 2𝑛−2𝑆𝑛−
2 ≥ 𝑆𝑛 coins.

• Case 𝑖 < 𝑛 − 1:
After the first propagation 𝑆′

2 = 𝑆′
𝑖 = 0, 𝑆′

𝑛 = 𝑆𝑛 + 2𝑛−𝑖𝑆𝑖. After
swapping and the second propagation, 𝑆″

2 = 2, 𝑆″
𝑖 = 2𝑖−2(𝑆𝑛+2𝑛−𝑖𝑆𝑖−

2) ≥ 2𝑖−2𝑆𝑛 + 2𝑖−2 (4𝑆𝑖 − 2)⏟
≥𝑆𝑖

. Therefore we propagate at least 2𝑖−1𝑆𝑛

coins to bucket 𝑛 and get at least 2𝑛−2𝑆𝑛 ≥ 𝑆𝑛 coins.

Theorem 3. If swap(i,j,k) is used in an optimal sequence of operations on
𝑛 ≥ 3 buckets then

(1) ∀𝑗 ≤ 𝑥 < 𝑘 ∶ 𝑆𝑥 = 0

(2) 𝑗 = 𝑖 + 1

(3) 𝑘 = 𝑛

Proof.

(1) If ∃𝑗 ≤ 𝑥 < 𝑘 ∶ 𝑆𝑥 > 0 we can propagate the 𝑆𝑥 coins to bucket 𝑛,
so 𝑆′

𝑛 = 𝑆𝑛 + 2𝑛−𝑥𝑆𝑥, then do the swap and propagate the 2𝑛−𝑥𝑆𝑥
additional coins to bucket 𝑥, so 𝑆′

𝑥 = 𝑆𝑥 + 2𝑛−𝑥+𝑥−𝑗𝑆𝑥 ≥ 𝑆𝑥. Therefore
an optimal sequence cannot have such an 𝑆𝑥.
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(2) If 𝑗 > 𝑖+1 we can instead do 𝑠𝑤𝑎𝑝(𝑖, 𝑖+1, 𝑘) and propagate the coins 𝑆𝑘
in bucket 𝑖 to bucket 𝑗, so 𝑆′

𝑗 = 2𝑗−𝑖−1𝑆𝑘 ≥ 𝑆𝑘. In case 𝑆𝑖+1 > 0 we can
apply the same strategy as in the previous case. This means 𝑗 = 𝑖 + 1
for all swap operations in an optimal sequence.

(3) If 𝑘 < 𝑛 we can instead do propagate the coins in bucket 𝑘 to bucket 𝑛, so
𝑆′

𝑛 = 𝑆𝑛+2𝑛−𝑘𝑆𝑘 and do 𝑠𝑤𝑎𝑝(𝑖, 𝑗, 𝑛) and then propagate the additional
𝑆𝑛 + (2𝑛−𝑘 − 1)𝑆𝑘 coins to bucket 𝑛, which yields 𝑆″

𝑛 = 2𝑛−𝑗(𝑆𝑛 +
(2𝑛−𝑘 − 1)𝑆𝑘) ≥ 𝑆𝑛. Therefore 𝑘 = 𝑛 for all swap operations in optimal
sequences.

Theorem 4. 𝑔(𝑚, 𝑛) is optimal.

Proof.

• 𝑚 = 2: The only action that can be applied is increment, therefore the
statement trivially holds.

• 𝑚 > 2: This result follows immediately from Theorem 2 and Theorem
3.

Theorem 5. 𝑓(𝑛) is optimal.

Proof. The base cases 𝑓(1), 𝑓(2), 𝑓(3) can be verified by brute force.
With Theorem 2 and Theorem 3 we know that as soon as we take the

coin from bucket 1 in an optimal sequence of operations, we are in a state
that has the form (1, 0, … , 0, 𝑋). Clearly 𝑋 = 𝑓(𝑛 − 1). With Theorem 2
we know that the next action will be 𝑠𝑤𝑎𝑝(1, 2, 𝑛). Since, by Thorem 4 𝑔 is
optimal, 𝑔(𝑛 − 1, 𝑓(𝑛 − 1)) is the optimal value for 𝑓(𝑛).

Theorem 6. 𝑓 and 𝑔 are not primitive recursive.

Proof.
By Theorem 4 𝑔 has a lower bound given by 𝑔(𝑚, 𝑛) ≥ 2 ↑𝑚−2 𝑛, which we
know not to be primitive recursive. Clearly, 𝑓 cannot be primitive recursive,
either.

Theorem 7. All of humanity does not have enough SMU to play the coin
game optimally with 5 buckets.
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Proof.
Suppose there are 109 humans. We know that the richest human has < 240

SMU. Therefore all of humanity has < 109 ⋅ 240 SMU.
Clearly 𝑓(5) ≥ 2 ↑2 256 ≫ 109240.

By Theorem 7 and the fact that 𝑓(4) = 256 < 240, 5 is the minimal 𝑁
with which we can become the richest humans by playing the coin game.
By Theorem 5, 𝑓(𝑁) is the maximum number of coins that can be gained
by playing the coin game with 𝑁 buckets.
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