Coin game (How large can a finite Petri net get?)

We define a strategy for N buckets. Let $f(N)$ be the number of coins we get with this strategy.

We keep the coin in bucket 1 that is initially contained in it and apply our strategy to the remaining $N - 1$ buckets. This results in the game state $(1, 0, ..., f(N - 1))$. Now we spend the coin in bucket 1 to apply action 2: $\text{swap}(1, 2, N)$, resulting in state $(0, f(N - 1), 0, ..., 0)$.

For this we define another strategy, which takes a game in state $(n, 0, ..., 0)$ with m buckets. Let $g(m, n)$ be the number of coins resulting from this strategy. Therefore $f(n) = g(n - 1, f(n - 1))$. For this second strategy, in the first step our only option is to take one coin from the first bucket and put 2 in the next, resulting in state $(n - 1, 2, 0, ..., 0)$. Now we apply the strategy for $m - 1$ buckets, which leads to state $(n - 1, 0, ..., g(m - 1, 2))$ and use $\text{swap}(1, 2, m)$, which gives us state $(n - 2, g(m - 1, 2), 0, ...)$. At this point we can apply the same strategy recursively n times, so $g(m, n) = g(m - 1, g(m, n - 1))$.

As a basis for the two recursions, we know that $f(1) = 1, f(2) = 3, f(3) = 7$, which can easily be shown by looking at all possible actions, $g(m, 1) = g(m - 1, 2)$, because with one coin we cannot do the swap action for the next recursion step, so we only have two coins we get by using action 1, and $g(2, n) = 2n$, since the only option with two buckets is to use action 1.

Theorem 1. $g(m, n) \geq 2 \uparrow^{m-2} n$

Proof by induction.

- $m = 3$:
Proof by induction.

$n = 1$:

\[g(3, 1) = g(2, 2) = 2 \cdot 2 = 4 \geq 2 \uparrow^1 2. \]

$n \rightarrow n + 1$:

\[g(3, n + 1) = g(2, g(3, n)) \overset{IH_2}{\geq} g(2, 2 \uparrow^1 n) = 2 \uparrow^1 (n + 1). \]

• $m \rightarrow m + 1$:

Proof by induction.

$n = 1$:

\[g(m + 1, 1) = g(m, 2) \overset{IH_1}{\geq} 2 \uparrow^{m-2} 2 = 2 \uparrow^{m-1} 1. \]

$n \rightarrow n + 1$:

\[g(m + 1, n + 1) = g(m, g(m + 1, n)) \overset{IH_2}{\geq} g(m, 2 \uparrow^{m-1} n) \overset{IH_1}{\geq} 2 \uparrow^{m-2} (2 \uparrow^{m-1} n) = 2 \uparrow^{m-1} (n + 1) \]

\[\square \]

Theorem 2.

For any sequence of actions that uses inc(1) while \((0, 2^{n-2}, 2^{n-3}, \ldots, 2^{n-n})S \geq 4\), where S is the current state, there is another strategy that produces at least as many coins and does not use inc(1) in such a situation, for $n \geq 3$ buckets.

Proof.

Suppose inc(1) is used in such a situation on state S. Choose $i > 1$ minimal with $S_i > 0$. Then we can replace inc(1) by the following sequence of operations:

• propagate all coins from bucket 1 to bucket n

• swap(1,2,n)

• leave $S_2 + 2$ coins in bucket 2 and propagate the rest to bucket i

• leave S_i coins in bucket i and propagate the rest to bucket n

We show that the state obtained by applying this sequence of operations covers this state obtained by applying inc(1). Therefore the remainder of the original sequence of operations remains valid.

Bucket 1 has 1 coin less after both sequences of operations, bucket 2 has 2 additional coins and therefore the same number of coins in both cases, bucket n has at least as many as in the other case and all other buckets have exactly the same number of coins.
• Case $i = n$:
 In this case we know that $S_n \geq 4$.
 Then we have $S'_n = S_n$, $S''_n = 2^{n-2}(S_n - 2) \geq 2(S_n - 2) \geq S_n$

• Case $i = n - 1$:
 After the first propagation $S'_2 = S'_i = 0$, $S''_n = S_n + 2^{n-i}S_i$. After
 swapping and the second propagation, $S''_2 = 2$, $S''_i = 2^{i-2}(S_n + 2^{n-i}S_i -
 2) = 2^{n-3}(S_n + 2S_i - 2) = 2^{n-3}S_n + 2^{n-2}(S_i - 1)$.
 \begin{itemize}
 \item $S_i > 1$:
 Then $2^{n-2}(S_i - 1) \geq S_i$ and we propagate at least $2^{n-3}S_n$ coins to
 bucket n, which will contain at least $4S_n \geq S_n$ coins.
 \item $S_i = 1$:
 Because this state was generated by a sequence of actions starting from
 $(1, \ldots, 1)$, we have $S_n \geq 2$. We then propagate all but one
 token from S_i to S_n, where we will have $2(2^{n-3}S_n - 1) = 2^{n-2}S_n -
 2 \geq S_n$ coins.
 \end{itemize}

• Case $i < n - 1$:
 After the first propagation $S'_2 = S'_i = 0$, $S'_n = S_n + 2^{n-i}S_i$. After
 swapping and the second propagation, $S''_2 = 2$, $S''_i = 2^{i-2}(S_n + 2^{n-i}S_i -
 2) \geq 2^{i-2}S_n + 2^{i-2}(4S_i - 2)$. Therefore we propagate at least $2^{i-1}S_n
 \geq S_i$ coins to bucket n and get at least $2^{n-2}S_n \geq S_n$ coins.

\begin{proof}
\end{proof}

Theorem 3. If $\text{swap}(i,j,k)$ is used in an optimal sequence of operations on
$n \geq 3$ buckets then

(1) $\forall j \leq x < k : S_x = 0$

(2) $j = i + 1$

(3) $k = n$

Proof.

(1) If $\exists j \leq x < k : S_x > 0$ we can propagate the S_x coins to bucket n, so $S'_n = S_n + 2^{n-x}S_x$, then do the swap and propagate the $2^{n-x}S_x$
additional coins to bucket x, so $S'_x = S_x + 2^{n-x+j}S_x \geq S_x$. Therefore
an optimal sequence cannot have such an S_x.

3
(2) If $j > i + 1$ we can instead do $\text{swap}(i, i+1, k)$ and propagate the coins S_k in bucket i to bucket j, so $S_j' = 2^{j-i-1}S_k \geq S_k$. In case $S_{i+1} > 0$ we can apply the same strategy as in the previous case. This means $j = i + 1$ for all swap operations in an optimal sequence.

(3) If $k < n$ we can instead do propagate the coins in bucket k to bucket n, so $S_n' = S_n + 2^{n-k}S_k$ and do $\text{swap}(i, j, n)$ and then propagate the additional $S_n' + (2^{n-k} - 1)S_k$ coins to bucket n, which yields $S_n'' = 2^{n-j}(S_n + (2^{n-k} - 1)S_k) \geq S_n$. Therefore $k = n$ for all swap operations in optimal sequences.

Theorem 4. $g(m, n)$ is optimal.

Proof.

- $m = 2$: The only action that can be applied is increment, therefore the statement trivially holds.
- $m > 2$: This result follows immediately from Theorem 2 and Theorem 3.

Theorem 5. $f(n)$ is optimal.

Proof. The base cases $f(1), f(2), f(3)$ can be verified by brute force.

With Theorem 2 and Theorem 3 we know that as soon as we take the coin from bucket 1 in an optimal sequence of operations, we are in a state that has the form $(1, 0, \ldots, 0, X)$. Clearly $X = f(n-1)$. With Theorem 2 we know that the next action will be $\text{swap}(1, 2, n)$. Since, by Theorem 4 g is optimal, $g(n-1, f(n-1))$ is the optimal value for $f(n)$.

Theorem 6. f and g are not primitive recursive.

Proof.

By Theorem 4 g has a lower bound given by $g(m, n) \geq 2 \uparrow^{m-2} n$, which we know not to be primitive recursive. Clearly, f cannot be primitive recursive, either.

Theorem 7. All of humanity does not have enough SMU to play the coin game optimally with 5 buckets.
Proof.
Suppose there are 10^9 humans. We know that the richest human has $< 2^{240}$ SMU. Therefore all of humanity has $< 10^9 \cdot 2^{240}$ SMU.
Clearly $f(5) \geq 2 \uparrow^2 256 \gg 10^9 2^{240}$.

By Theorem 7 and the fact that $f(4) = 256 < 2^{240}$, 5 is the minimal N with which we can become the richest humans by playing the coin game. By Theorem 5, $f(N)$ is the maximum number of coins that can be gained by playing the coin game with N buckets.