Excercise 5

Concurrency Theory

Stephan Spengler Johannes Freiermuth

December 6, 2017

1 Lexicographic Order is a well-pseudo-order

Let $a = (a_1, a_2, a_3, a_4, a_5, a_6) \in \mathbb{N}^6$ and $b = (b_1, b_2, b_3, b_4, b_5, b_6) \in \mathbb{N}^6$ be two states. Their first difference is at: $i_{a,b} := \max \{x \in [1, 6] \mid \forall i < x : a_i = b_i\}$. $a \leq b \iff a_{i_{a,b}} \leq b_{i_{a,b}}$. Note that in case there is none at all, we have $i_{a_b} = 6$. Hence the last digit decides.

Theorem 1. \leq is a well-pseudo-order.

Proof. Reflexive Let $a \in \mathbb{N}^6$. It is $i_{a,a} = 6$ and $a_6 = a_6$. \preceq is reflexive \checkmark

Transitive Let $a \leq b$ and $b \leq c$. Thus $a_{i_{a,b}} \leq b_{i_{a,b}}$ and $b_{i_{b,c}} \leq c_{i_{b,c}}$.

- Case I $(i_{a,b} = i_{b,c})$: Here $i_{a,c} = i_{a,b} = i_{b,c}$ and $a_{i_{a,c}} \leq c_{i_{a,c}}$. Hence $a \leq c$. Case II $(i_{a,b} < i_{b,c})$: Here $a_{i_{a,b}} \leq b_{i_{a,b}} = c_{i_{a,b}}$. For all $j < i_{a,b}$ we have $a_j = b_j = c_j$. Thus $i_{a,c} = i_{a,b}$. So due to $a_{i_{a,c}} \leq c_{i_{a,c}}$ it is $a \leq c$.
- **Case III** $(i_{a,b} > i_{b,c})$: Here $a_{i_{b,c}} = b_{i_{b,c}} \le c_{i_{b,c}}$. For all $j < i_{b,c}$ we have $a_j = b_j = c_j$. Thus $i_{a,c} = i_{b,c}$. So due to $a_{i_{a,c}} \le c_{i_{a,c}}$ it is $a \preceq c$.
- Antisymetric Let $a \leq b$ and $b \leq a$. Let $i := i_{a,b} = i_{b,a}$. It is $a_i \leq b_i \leq a_i$. Thus $a_i = b_i$, which can only be the case at the very end, i.e. i = |a| = |b| = 6. So a = b.

Well First note that a and b are always comparable under \leq . So $a \not\geq b \implies a \succ b$.

Let $a, b \in \mathbb{N}^d$. We will show via induction over d that every decreasing sequence, with respect to \preceq , is finite.

Induction Basis d = 1

Here $a, b \in N$ and $\leq =\leq$. Obviously there is no infinite sequence $a^1 > a^2 > \dots$ for $a^i \in \mathbb{N}$.

Induction Hypothesis For one d we know \leq allows only finite decreasing sequences.

Induction Step $d+1 \frown d$

Observe any decreasing sequence $a^1 \succ a^2 \succ \ldots$ with $a^i \in \mathbb{N}^{d+1}$. Note that for all a^i the first element has to be at least $a^1_1 \ge a^i_1$.

 $a_1^1 = a_i^i$ cannot be true for all *i* since due to the induction hypotheses there are only finite decreasing sequences over \mathbb{N}^d .

Let us look at the first *i* where $a_1^1 > a_1^i$: Due to the induction hypotheses the sequence in between was finite.

Since we can decrease a_1^i only a finite amount of times the while sequence is finite. \checkmark

2 Game is finite

As we just have proven there is infinite decreasing sequence over \mathbb{N}^6 with repsect to \preceq . Let us look at the two operation. We will show that both decrease the state.

Move Let $% \left({{\rm{Let}}} \right) = {{\rm{Let}}} \left({{\rm{Let}}} \right)$

$$m(a,i)_k = \begin{cases} a_k & i \neq k \neq i+1 \\ a_k - 1 & i = k \\ a_k + 2 & i+1 = k. \end{cases}$$

Observe any b = m(a, i). For all j > i it is $b_j = a_j$ and $a_i > b_i$. Hence $i_{a,b} = i$ and $a \succ b$.

Swap Let

$$s(a, i, j, k)_{l} = \begin{cases} a_{i} - 1 & l = i \\ a_{k} & l = j \\ a_{j} & l = k \\ a_{l} & \text{otherwise} \end{cases}$$

Again observe any b = s(a, i, j, k). Again for all j > i it is $b_j = a_j$ and $a_i > b_i$. Hence again $i_{a,b} = i$ and $a \succ b$.

Thus every sequence of moves is finite.

3 Compatibility

a) Lexicographic

Let a = (1, 1, 1, 5, 3, 1), b = s(a, 3, 4, 5) = (1, 1, 0, 3, 5, 1) and $a \preceq a' = (1, 1, 1, 6, 2, 0)$. Observe b' := s(a', 3, 4, 5) = (1, 1, 0, 6, 2, 0). $a' \not\preceq b'$. Thus we found counterexample.

b) Component Wise

Let a and $a' \in \mathbb{N}^6$ s.t. $a \leq a'$. Let's first look at the move operation: Let b = m(a, i) and b' = m(b, i).

$$b_i = a_i - 1 \le a'_i - 1 = b'_i$$

$$b_{i+1} = a_i + 2 \le a'_i + 2 = b'_i$$

$$\forall j \{i, i+1\} : b_j = a_j \le a'_j = b'_j$$

Hence $b \leq b'$.

Now let's first look at the swap operation: Let b = m(a, i, j, k) and b' = s(b, i, j, k).

$$b_{i} = a_{i} - 1 \le a'_{i} - 1 = b'_{i}$$
$$b_{j} = a_{k} + 2 \le a'_{k} + 2 = b'_{j}$$
$$b_{k} = a_{j} + 2 \le a'_{j} + 2 = b'_{k}$$
$$\forall j \{i, j, k\} : b_{j} = a_{j} \le a'_{j} = b'_{j}$$

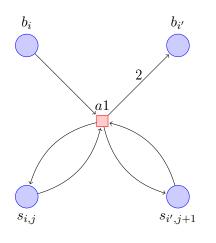
Hence $b \leq b'$.

4 Petri Net

Define $N = \{1, ..., n\}.$

For each bucket $i \in N$, we have one place b_i that stores the number of coins in this bucket, and n places $s_{i,j}$, $j \in N$, that stores the position of the bucket: Iff there is a token in place $s_{i,j}$, then bucket i is at position j. So, all in all, we have $n^2 + n$ places.

For the first action we add the following transitions: For every $i \in N, i' \in N \setminus \{i\}, j \in N \setminus \{n\}$:



For the second action we add the following transitions: For every $i \in N, i' \in N \setminus \{i\}, i' \in N \setminus \{i, i'\}, j < j' < j'' \in N$: $b_i \qquad s_{i',j''} \qquad s_{i'',j'}$

