
Real-world verification: the case of security
protocol standards

Marko Horvat

MPI-SWS

27/11/2017

1 / 12

Introduction

Actor Key Compromise

Improving the ISO/IEC 11770 standard

Formal analysis of TLS 1.3

2 / 12

Security protocols. Actor Key Compromise (AKC)
I Most of us run security protocols on a daily basis:

I secure searches, e-shopping, remote login, physical access, . . .

I Example: simple challenge-response

Reader Card

{n}pk(Card)

n

alive(Card)

I Here reader knows card is present if sk(Card) is secret
I Unfortunately, long-term secrets can be compromised

I Lavabit, Heartbleed, $5 wrench, . . .

I We might wonder: can the reader get any security
guarantees if sk(Reader) is compromised?

3 / 12

Securing NSL with respect to AKC

A B

{A,nA}pk(B)

{B,nA, nB}pk(A)

{nB}pk(B)

secret(nA, nB) secret(nA, nB)

agree(B,nB)

I hashed
nonces in
msgs #2,#3

I hashed
nonces
together to
form key

I copied nB
inside hash
in msg #2

I removed
unnecessary
encryption in
msg #3

4 / 12

Securing NSL with respect to AKC

A B

{A,nA}pk(B)

Adversary

{B,nA, nB}pk(A){B,nA, n
′
B}pk(A)

{n′
B}pk(B) {nB}pk(B)

agree(B,n′
B)

I hashed
nonces in
msgs #2,#3

I hashed
nonces
together to
form key

I copied nB
inside hash
in msg #2

I removed
unnecessary
encryption in
msg #3

4 / 12

Securing NSL with respect to AKC

A B

{A,nA}pk(B)

{B,nA, nB}pk(A)

{nB}pk(B)

secret(nA, nB) secret(nA, nB)

agree(B,nB)

I hashed
nonces in
msgs #2,#3

I hashed
nonces
together to
form key

I copied nB
inside hash
in msg #2

I removed
unnecessary
encryption in
msg #3

4 / 12

Securing NSL with respect to AKC

A B

{A,nA}pk(B)

{B, h(nA), nB}pk(A)

{h(nB)}pk(B)

secret(nA, nB) secret(nA, nB)

agree(B,nB)

I hashed
nonces in
msgs #2,#3

I hashed
nonces
together to
form key

I copied nB
inside hash
in msg #2

I removed
unnecessary
encryption in
msg #3

4 / 12

Securing NSL with respect to AKC

A B

{A,nA}pk(B)

{B, h(nA), nB}pk(A)

{h(nB)}pk(B)

secret(h′(nA, nB)) secret(h′(nA, nB))

agree(B,nB)

I hashed
nonces in
msgs #2,#3

I hashed
nonces
together to
form key

I copied nB
inside hash
in msg #2

I removed
unnecessary
encryption in
msg #3

4 / 12

Securing NSL with respect to AKC

A B

{A,nA}pk(B)

{B, h(nA, nB), nB}pk(A)

{h(nB)}pk(B)

secret(h′(nA, nB)) secret(h′(nA, nB))

agree(B,nB)

I hashed
nonces in
msgs #2,#3

I hashed
nonces
together to
form key

I copied nB
inside hash
in msg #2

I removed
unnecessary
encryption in
msg #3

4 / 12

Securing NSL with respect to AKC

A B

{A,nA}pk(B)

{B, h(nA, nB), nB}pk(A)

h(nB)

secret(h′(nA, nB)) secret(h′(nA, nB))

agree(B,nB)

I hashed
nonces in
msgs #2,#3

I hashed
nonces
together to
form key

I copied nB
inside hash
in msg #2

I removed
unnecessary
encryption in
msg #3

4 / 12

AKC results

I We use tool-supported formal methods for our case studies
I Typical assumptions in symbolic setting

I Perfect cryptography
I Adversary controls the network

I Four different adversary models
I The strongest has all long-term keys but those of intended peer
I Scyther used for small protocols, Tamarin otherwise

I We fix five vulnerable protocols:
I NSL, two CCITT X.509 protocols, two modes of TLS-RSA

I We verify two protocols are AKC secure:
I SSH Transport Layer, Mutual TLS-DHE RSA

I All fixes must go beyond symmetric cryptography and hashing

5 / 12

ISO/IEC 11770

I Standard for key management techniques
I Included in European Payments Council guidelines
I Parts 2 and 3: 33 security protocols and over 50 variants

I We build on earlier work by Lara Schmid and Tomas Zgraggen
I Significant modelling effort: informal properties, missing threat

model
I Scyther used for its easy scripting of batch analysis
I Large amount of data with some great extrapolations

I Our main contributions:
I We perform comprehensive analysis in minimal threat model
I We establish clear relation of analysis to claims in standard
I As a bonus, we consider AKC and UKS vulnerabilities

6 / 12

Advanced security properties

I Actor Key Compromise (AKC)
I All protocols in Part 2 use symmetric cryptography and

hashing only
I Impossibility result from our previous paper: necessarily

vulnerable to AKC
I Four protocols in Part 3 vulnerable to AKC (easily replaced)

I Unknown Key Share (UKS)
I Attacks where only Alice and Bob know session key K
I However, Alice and Bob disagree on who they share K with
I Using K does not authenticate subsequent messages
I Protocols 3-KA-11 and 2-10 vulnerable to UKS

I Another five from Part 2 if multiple roles per entity are allowed

I Fix by binding certs/identities to keying material (NIST
SP-800-56A)

7 / 12

ISO/IEC 11770 conclusions

I Main cause of problems:
I Standard based on obsolete version of 9798 (entity

authentication)
I Prior to our work, no effort to fix inherited problems in 11770

I Recommendations to ISO/IEC 11770 working group:
1. Make the threat model explicit

I Allows for precise assessment if security requirements met

2. Adopt recommendations for ISO/IEC 9798 (Basin et al.)
3. Address remaining issues with 3-KA-11

I Switch to TLS-DHE RSA or adapt statements made

4. Ensure resilience to AKC and UKS as described

I Current state of the standard:
I 3-KA-11 removed from Part 3 in 2015 update
I Part 2 scheduled to be fixed

8 / 12

ISO/IEC 11770 conclusions

I Main cause of problems:
I Standard based on obsolete version of 9798 (entity

authentication)
I Prior to our work, no effort to fix inherited problems in 11770

I Recommendations to ISO/IEC 11770 working group:
1. Make the threat model explicit

I Allows for precise assessment if security requirements met

2. Adopt recommendations for ISO/IEC 9798 (Basin et al.)
3. Address remaining issues with 3-KA-11

I Switch to TLS-DHE RSA or adapt statements made

4. Ensure resilience to AKC and UKS as described

I Current state of the standard:
I 3-KA-11 removed from Part 3 in 2015 update
I Part 2 scheduled to be fixed

8 / 12

Formal analysis of TLS 1.3
I TLS 1.2 critical in securing Internet communications today
I Lacking in both efficiency and security
I TLS Working Group preparing TLS 1.3 draft
I We analyse rev 06 of the specification

I Joint with Cas Cremers, unpublished
I Our tool of choice is the Tamarin prover

I Supports loops, non-monotonic state, Diffie-Hellman. . .
I Evolution of Tamarin models of TLS

Basic TLS 1.2 model→Refined TLS 1.2 model (2014 Q4)
→TLS 1.3, rev 06 model (first half of 2015)

c0start

c1

c2

c3

C 1

C 2

C 1 retry

C 1 resume

C send appdata C recv appdata

C 2 resume

s0start

s1

s2

s3

S 1

S 1 retry

S 2

S 1 resume

S send appdata S recv appdata

S 2 resume

9 / 12

Results for TLS 1.3, rev 06 and beyond

I In rev 06, session keys secret in both authentication modes
I Powerful symbolic attacker: active, AKC, PFS, DH reveal
I Unbounded analysis breadth (concurrent threads)
I Unbounded depth (retries, resumptions, data exchanges)
I Limited coverage: single authentication mode at a time

I Next step: refine to TLS 1.3, rev 10
I Joint with Cas Cremers, Sam Scott, Thyla van der Merwe
I Collaboration of Mozilla, Oxford, RHUL
I Second half of 2015

I TLS 1.3, rev 10 results:
I Standard AKE security requirements verified

I Session key secrecy and entity authentication
I Any mix of authentication modes, but no DH reveal

I Attack on its extension (RWC, TRON, S&P)
I This work led to an update of the current (rev 11) draft

I Latest work (also with Jonathan Hoyland): rev 21 (CCS)

10 / 12

Our TLS 1.3 rev 10
state machines

c0start

c1−dhe

c1−psk

c1−kc

c2a c2 c3

ClientHello Receive ServerHello/Finished +
Send ClientFinished

Client
authentication

C
1

C 1 PSK

C 1 KC

C 2 PSK

C 2 PSK DHE

C 1 KC Auth

C 1 retry

C
2

C 2 KC

C 2 NoAuth

C 2 Auth C 3

C 3 NST

C send

C recv

s0start

s1a−psk

s1a

s1 s2 s3

S
1

S
1
KC

S
1
KC

RecvAuth

S
1
PS

K

S
1
PS

K
DH

E S
1
PSK

AuthS
1
PSK

NoAuth

S
1
No

Au
th

S
1
Au

th
Re
q

S 1 retry

S 2

S 2 RecvAuth

S 2 Auth

S 3

S 3 NST

S send

S recv

Process ClientHello +
Send ServerHello

Update authen-
tication state

Receive ClientFinished
(with authentication)

Update authen-
tication status

11 / 12

Our TLS 1.3 rev 10+
state machines

c0start

c1−dhe

c1−psk

c1−kc

c2a c2 c3

ClientHello Receive ServerHello/Finished +
Send ClientFinished

Client
authentication

C
1

C 1 PSK

C 1 KC

C 2 PSK

C 2 PSK DHE

C 1 KC Auth

C 1 retry

C
2

C 2 KC

C 2 NoAuth

C 2 Auth C 3

C 3 NST

C send

C Auth

C recv

s0start

s1a−psk

s1a

s1 s2 s3

S
1

S
1
KC

S
1
KC

RecvAuth

S
1
PS

K

S
1
PS

K
DH

E S
1
PSK

AuthS
1
PSK

NoAuth

S
1
No

Au
th

S
1
Au

th
Re
q

S 1 retry

S 2

S 2 RecvAuth

S 2 Auth

S 3

S 3 NST

S send

S recv

S AuthReq

S RecvAuth

Process ClientHello +
Send ServerHello

Update authen-
tication state

Receive ClientFinished
(with authentication)

Update authen-
tication status

11 / 12

TLS 1.3 rev 10+
client impersonation
attack (PSK+client
authentication)

Client Alice Charlie

(As server Charlie) (As client Alice)

Server Bob

Reuse psk idInitial handshake 1
Client not authenticated, PSK1 exchanged

Initial handshake 2
Client not authenticated, PSK2 exchanged

Generate nc

Start PSK1 resumption Start PSK2 resumptionReuse nc , psk id

client random = nc
session ticket = psk id

client random = nc
session ticket = psk id

Generate ns

Accept PSK2 resumptionAccept PSK1 resumption Recompute Finished

server random = nsserver random = ns

PSK1 resumption done PSK2 resumption doneRecompute Finished

Compute session keys
based on PSK1

Compute session keys
based on PSK1, PSK2

Compute session keys
based on PSK2

Client authentication requestClient authentication request Re-encrypt

Client authentication Client authenticationRe-encrypt

Certificate = CertAlice

CertificateVerify =
sign(nc, ns, psk id ,CertAlice, . . .)

Certificate = CertAlice

CertificateVerify =
sign(nc, ns, psk id ,CertAlice, . . .)

Alice is in a session with me (Bob).

Only Alice knows the session keys.

Application data exchange

Charlie impersonates Alice

mhorvat@mpi-sws.org 12 / 12

TLS 1.3 rev 10+
client impersonation
attack (PSK+client
authentication)

Client Alice Charlie

(As server Charlie) (As client Alice)

Server Bob

Reuse psk idInitial handshake 1
Client not authenticated, PSK1 exchanged

Initial handshake 2
Client not authenticated, PSK2 exchanged

Generate nc

Start PSK1 resumption Start PSK2 resumptionReuse nc , psk id

client random = nc
session ticket = psk id

client random = nc
session ticket = psk id

Generate ns

Accept PSK2 resumptionAccept PSK1 resumption Recompute Finished

server random = nsserver random = ns

PSK1 resumption done PSK2 resumption doneRecompute Finished

Compute session keys
based on PSK1

Compute session keys
based on PSK1, PSK2

Compute session keys
based on PSK2

Client authentication requestClient authentication request Re-encrypt

Client authentication Client authenticationRe-encrypt

Certificate = CertAlice

CertificateVerify =
sign(nc, ns, psk id ,CertAlice, . . .)

Certificate = CertAlice

CertificateVerify =
sign(nc, ns, psk id ,CertAlice, . . .)

Alice is in a session with me (Bob).

Only Alice knows the session keys.

Application data exchange

Charlie impersonates Alice

mhorvat@mpi-sws.org 12 / 12

TLS 1.3 rev 10+
client impersonation
attack (PSK+client
authentication)

Client Alice Charlie

(As server Charlie) (As client Alice)

Server Bob

Reuse psk idInitial handshake 1
Client not authenticated, PSK1 exchanged

Initial handshake 2
Client not authenticated, PSK2 exchanged

Generate nc

Start PSK1 resumption Start PSK2 resumptionReuse nc , psk id

client random = nc
session ticket = psk id

client random = nc
session ticket = psk id

Generate ns

Accept PSK2 resumptionAccept PSK1 resumption Recompute Finished

server random = nsserver random = ns

PSK1 resumption done PSK2 resumption doneRecompute Finished

Compute session keys
based on PSK1

Compute session keys
based on PSK1, PSK2

Compute session keys
based on PSK2

Client authentication requestClient authentication request Re-encrypt

Client authentication Client authenticationRe-encrypt

Certificate = CertAlice

CertificateVerify =
sign(nc, ns, psk id ,CertAlice, . . .)

Certificate = CertAlice

CertificateVerify =
sign(nc, ns, psk id ,CertAlice, . . .)

Alice is in a session with me (Bob).

Only Alice knows the session keys.

Application data exchange

Charlie impersonates Alice

mhorvat@mpi-sws.org 12 / 12

TLS 1.3 rev 10+
client impersonation
attack (PSK+client
authentication)

Client Alice Charlie

(As server Charlie) (As client Alice)

Server Bob

Reuse psk idInitial handshake 1
Client not authenticated, PSK1 exchanged

Initial handshake 2
Client not authenticated, PSK2 exchanged

Generate nc

Start PSK1 resumption Start PSK2 resumptionReuse nc , psk id

client random = nc
session ticket = psk id

client random = nc
session ticket = psk id

Generate ns

Accept PSK2 resumptionAccept PSK1 resumption Recompute Finished

server random = nsserver random = ns

PSK1 resumption done PSK2 resumption doneRecompute Finished

Compute session keys
based on PSK1

Compute session keys
based on PSK1, PSK2

Compute session keys
based on PSK2

Client authentication requestClient authentication request Re-encrypt

Client authentication Client authenticationRe-encrypt

Certificate = CertAlice

CertificateVerify =
sign(nc, ns, psk id ,CertAlice, . . .)

Certificate = CertAlice

CertificateVerify =
sign(nc, ns, psk id ,CertAlice, . . .)

Alice is in a session with me (Bob).

Only Alice knows the session keys.

Application data exchange

Charlie impersonates Alice

mhorvat@mpi-sws.org 12 / 12

TLS 1.3 rev 10+
client impersonation
attack (PSK+client
authentication)

Client Alice Charlie

(As server Charlie) (As client Alice)

Server Bob

Reuse psk idInitial handshake 1
Client not authenticated, PSK1 exchanged

Initial handshake 2
Client not authenticated, PSK2 exchanged

Generate nc

Start PSK1 resumption Start PSK2 resumptionReuse nc , psk id

client random = nc
session ticket = psk id

client random = nc
session ticket = psk id

Generate ns

Accept PSK2 resumptionAccept PSK1 resumption Recompute Finished

server random = nsserver random = ns

PSK1 resumption done PSK2 resumption doneRecompute Finished

Compute session keys
based on PSK1

Compute session keys
based on PSK1, PSK2

Compute session keys
based on PSK2

Client authentication requestClient authentication request Re-encrypt

Client authentication Client authenticationRe-encrypt

Certificate = CertAlice

CertificateVerify =
sign(nc, ns, psk id ,CertAlice, . . .)

Certificate = CertAlice

CertificateVerify =
sign(nc, ns, psk id ,CertAlice, . . .)

Alice is in a session with me (Bob).

Only Alice knows the session keys.

Application data exchange

Charlie impersonates Alice

mhorvat@mpi-sws.org 12 / 12

TLS 1.3 rev 10+
client impersonation
attack (PSK+client
authentication)

Client Alice Charlie

(As server Charlie) (As client Alice)

Server Bob

Reuse psk idInitial handshake 1
Client not authenticated, PSK1 exchanged

Initial handshake 2
Client not authenticated, PSK2 exchanged

Generate nc

Start PSK1 resumption Start PSK2 resumptionReuse nc , psk id

client random = nc
session ticket = psk id

client random = nc
session ticket = psk id

Generate ns

Accept PSK2 resumptionAccept PSK1 resumption Recompute Finished

server random = nsserver random = ns

PSK1 resumption done PSK2 resumption doneRecompute Finished

Compute session keys
based on PSK1

Compute session keys
based on PSK1, PSK2

Compute session keys
based on PSK2

Client authentication requestClient authentication request Re-encrypt

Client authentication Client authenticationRe-encrypt

Certificate = CertAlice

CertificateVerify =
sign(nc, ns, psk id ,CertAlice, . . .)

Certificate = CertAlice

CertificateVerify =
sign(nc, ns, psk id ,CertAlice, . . .)

Alice is in a session with me (Bob).

Only Alice knows the session keys.

Application data exchange

Charlie impersonates Alice

mhorvat@mpi-sws.org 12 / 12

TLS 1.3 rev 10+
client impersonation
attack (PSK+client
authentication)

Client Alice Charlie

(As server Charlie) (As client Alice)

Server Bob

Reuse psk idInitial handshake 1
Client not authenticated, PSK1 exchanged

Initial handshake 2
Client not authenticated, PSK2 exchanged

Generate nc

Start PSK1 resumption Start PSK2 resumptionReuse nc , psk id

client random = nc
session ticket = psk id

client random = nc
session ticket = psk id

Generate ns

Accept PSK2 resumptionAccept PSK1 resumption Recompute Finished

server random = nsserver random = ns

PSK1 resumption done PSK2 resumption doneRecompute Finished

Compute session keys
based on PSK1

Compute session keys
based on PSK1, PSK2

Compute session keys
based on PSK2

Client authentication requestClient authentication request Re-encrypt

Client authentication Client authenticationRe-encrypt

Certificate = CertAlice

CertificateVerify =
sign(nc, ns, psk id ,CertAlice, . . .)

Certificate = CertAlice

CertificateVerify =
sign(nc, ns, psk id ,CertAlice, . . .)

Alice is in a session with me (Bob).

Only Alice knows the session keys.

Application data exchange

Charlie impersonates Alice

mhorvat@mpi-sws.org 12 / 12

Negative AKC result

Impossibility of authentication under AKC

Suppose P is a protocol where:

I symmetric cryptography and hashing are the only
cryptographic primitives used, and

I freshly generated values are first sent out in accessible
positions

I not hashed (includes approximations, e.g. DH)
I not used as symmetric keys

Then aliveness cannot be achieved in P under AKC.

ISO/IEC 11770 security properties and threat model

I Informal security properties made explicit for each protocol:
I entity authentication
I key authentication
I forward secrecy
I . . .

I We make reasonable assumptions on adversary capabilities:

I Injecting/tampering with network messages
I only way to effectively violate entity authentication

I Eavesdropping on network messages
I otherwise, we would need no complex key management, but

simple authentication mechanisms

I Compromising long-term private keys of entities
I only way to violate perfect forward secrecy

Protocol 2-12 with optional parts

P A B

eKAP
(1,TA/NA, IB ,F ,Text1)

eKAP
(2,TA/NA, IB ,Text2),

eKBP
(3,TP/NP ,F , IA,Text3)

K = KDF (F)

eKBP
(3,TP/NP ,F , IA,Text3),

eK (T ′
A/N

′
A, IB ,Text4)

K = KDF (F)

eK (TB/NB , IA,Text5)

I Derived from a mutual authentication mechanism in 9798-2

I Claimed to satisfy mutual explicit key authentication, mutual
key confirmation and mutual entity authentication

I But: A cannot/does not decrypt eKBP
(3,TP/NP ,F , IA,Text3)

AT1: Entity authentication failure for protocol 2-12

Pete plays P
(A,B)=(Alice,Bob)

Pete plays A
(B,P)=(Bob,Alice)

Bob plays B
(A,P)=(Alice,Pete)

eKPete,Alice
(1,TA/NA, IBob,F ,Text1)

eKAlice,Pete
(2,TA/NA, IBob,Text2),

eKBob,Pete
(3,TP/NP ,F , IAlice ,Text3)

eKBob,Pete
(3,TP/NP ,F , IAlice ,Text3)

eK (T
′
A/N

′
A, IBob,Text4)

alive(Alice)

eK (. . .)

AT4: Type-flaw attack on key authentication in 2-11
P A B

eKAP
(IB ,F ,Text1)

eKBP
(F , IA,Text2) eKBP

(F , IA,Text2)

K = KDF (F) K = KDF (F)

secret(KDF (F))

Pete plays P
(A,B)=(Charlie,Alice)

Adversary Charlie
knows KCharlie,Pete

eKCharlie,Pete
(IAlice , IBob,Text1)

Pete plays P
(A,B)=(Alice,Bob)

Bob plays B
(A,P)=(Alice,Pete)

eKAlice,Pete
(IBob, ICharlie ,Text2) eKBob,Pete

(ICharlie , IAlice ,Text
′
2)

secret(KDF (ICharlie))

AT4: Type-flaw attack on key authentication in 2-11
P A B

eKAP
(IB ,F ,Text1)

eKBP
(F , IA,Text2) eKBP

(F , IA,Text2)

K = KDF (F) K = KDF (F)

secret(KDF (F))

Pete plays P
(A,B)=(Charlie,Alice)

Adversary Charlie
knows KCharlie,Pete

eKCharlie,Pete
(IAlice , IBob,Text1)

Pete plays P
(A,B)=(Alice,Bob)

Bob plays B
(A,P)=(Alice,Pete)

eKAlice,Pete
(IBob, ICharlie ,Text2) eKBob,Pete

(ICharlie , IAlice ,Text
′
2)

secret(KDF (ICharlie))

Protocol 3-KA-11

A B

rA,Text1

rB ,CertB ,Text2

K = KDF (rA, rB , r
′
A)

eB(r ′A),MACK (rA,Text1, eB(r ′A))

K = KDF (rA, rB , r
′
A)

MACK (rB ,CertB ,Text2)

I According to the standard, it offers mutual explicit key
authentication and MFS

I Derived from unilaterally authenticated TLS RSA, so provides
neither

Claimed properties in Part 2

Mechanism Key Key Entity
in Part 2 Authentication Confirmation Authentication

2-1 implicit no no
2-2 implicit no no
2-3 explicit no A
2-4 explicit no A
2-5 explicit no A & B
2-6 explicit no A & B
2-7 implicit no no
2-8 explicit(AT1) opt.(AT1) opt.(AT1)
2-9 explicit(AT1) opt.(AT1) opt.(AT1)
2-10 explicit no no
2-11 explicit(AT4) no no
2-12 explicit(AT1) opt.(AT1) opt.(AT1)
2-13 explicit(AT1) opt.(AT1) opt.(AT1)

Claimed properties in Part 3

Mechanism Implicit Key Key Entity Forward
in Part 3 Authentication Confirmation Authentication Secrecy

3-KA-1 A,B no no no

3-KA-2 B no no A

3-KA-3 A,B B A A

3-KA-4 no no no MFS

3-KA-5 A,B opt no A,B

3-KA-6 A,B opt B B

3-KA-7 A,B A,B A,B MFS

3-KA-8 A,B no no A

3-KA-9 A,B no no MFS

3-KA-10 A,B A,B A,B MFS

3-KA-11 A,B(AT2) A,B(AT2) B MFS(AT3)

3-KT-1 B no no A

3-KT-2 B B A A

3-KT-3 B B A A

3-KT-4 A A B B

3-KT-5 A,B (A),B A,B no

3-KT-6 A,B A,B(AT5) A,B no

TLS 1.3 rev 10 (Full handshake, 0-RTT, PSK)
C S

ClientHello, ClientKeyShare

HelloRetryRequest

ClientHello, ClientKeyShare

ServerHello, ServerKeyShare, {EncryptedExtensions},
{ServerConfiguration*}, {Certificate}, {CertificateRequest*},
{CertificateVerify}, {Finished}

{Certificate*}, {CertificateVerify*}, {Finished}

[Application data]

C S

ClientHello, ClientKeyShare, EarlyDataIndication,
(EncryptedExtensions), (Certificate*), (Certificate Verify*),
(ApplicationData)

ServerHello, ServerKeyShare, EarlyDataIndication,
{EncryptedExtensions}, {ServerConfiguration*},{Certificate},
{CertificateRequest*}, {CertificateVerify}, {Finished}

{Finished}

[Application data]

C S

Initial handshake

[NewSessionTicket]

[Application data]

ClientHello, ClientKeyShare, PreSharedKeyExtension

ServerHello, PreSharedKeyExtension, {EncryptedExtensions},
{Finished}

{Finished}

[Application data]

	Actor Key Compromise
	Improving the ISO/IEC 11770 standard
	Formal analysis of TLS 1.3

