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Parameterised System

Motivations: analysis of a whole family of systems

S
p € Param is a parameter.

m Synthesis: "Does there exists p € Param such
that S, E@?"
m Validity: "Does %, E ¢ for all p?"
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Parameterised System

Different types of parameters:

m Guard constants values (in timed automata):
ParamcR*:

m Probability values (in stochastic systems):
Param < [0, 1],
...

m Number of interacting copies of processes:
Param = N.

- Validity of parameterised systems
composed with arbitrary many copies using
well-quasi order techniques.
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Arbitrary many copies

Definition
A parameterised system ¥ =(S5,/,Z,—) isa LTS (S5,%,—) equipped with
B A WQO < over S;

/\ . . .
m An upward-closed set of initial states /;

m A norm function |.|: S — N such that V(s,t),s<t=|s| <|t|.
We write S, ={s€ S | |s| = k} and & the LTS restricted to initial states
In /ﬂSk.
Not necessarily a WSTS!
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Some Petri Net example

I={k-po | keN}, L de/vxf Q/&)OQ)

M| = ...,

M =M if Ype P,M(p)<M'(p) and
support (M) ={p | M(p) >0} ={p | M'(p) >0} = support (/\D
Remark:

|M| is not necessarily the number of tokens in M.




Parameterised Systems (Our definition today)

Definition
A parameterised system ¥ =(S5,/,%,—) isa LTS (S5,%,—) equipped with
@ A WQO < over S;
m An upward-closed set of initial states /;
m A norm function |.|: S — N such that V(s,t),s<t=|s| <|t|.
m — preserves the norm
m S is finite for any k.

We write Sy ={s€ S | |s| = k} and ¥ the LTS restricted to initial states
In /ﬂSk.
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Cut-off property

Definition

A parameterised system (%), has a cut-off property for ¢ if there

exists a cut-off bound neN, such that

Vk>n FEpo FEQ

Namely, one of the two situations can happen:

m Vn=k %, @: Positive cut-off;
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m Vn=k S, ¥ ¢: Negative cut-off;
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Cut-off property

Definition
A parameterised system (%), has a cut-off property for ¢ if there
exists a cut-off bound neN, such that

Vk>n FEpo FEQ
Namely, one of the two situations can happen:

m Vn=k %, @: Positive cut-off;
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Cut-off point for coverability Safety in Petri Net:
general procedure

. Given a Petri N, with a set of upward-closed initial
marking | = 1pg and an upward closed set Bad. Is there a
marking M € | that can reach Bad?

m Karp-Miller tree from My=w- py.

m (Recall week 3): for any M, if there is M’ in
KarpMiller Tree(N) with M < M’, then N can cover M.

m Conclusion: the problem is EXPSPACE-complete.



Recall: Backward coverability {n \W_ST.S

function BackCoverFormal(N, pg, Bad, <)
U<~ Bad
U—g@
while U# U’ do
U—U

U — UuPre(U) Z( v, /Qb/gﬁ Ug@\C/QPQQ

return 3k: k-pge U



Non-atomic operations on shared variables

Inspired by:
m Model checking parameterized asynchronous shared-memory

systems.

Antoine Durand-Gasselin, Javier Esparza, Pierre Ganty, Rupak
Majumdar, 2017

m Reachability in Networks of Register Protocols under Stochastic
Schedulers

Patricia Bouyer, Nicolas Markey, Mickael Randour, Arnaud Sangnier,
Daniel Stan, 2016



The model
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Reg/ster protoco/ with D ={0,1,2}.

Definition: register protocol

P =(Q,D,q0,do,qr, T)
(Q,q0,9f, T) is a finite state automaton;

O

m D finite dataset for the shared register;

m dp an initial value;

m T cQx{R,W}xDxQ set of transitions, labelled by read and write
operations over D.
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Network for two processes (self-loops omitted).
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Network for two processes (self-loops omitted).
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Network for two processes (self-loops omitted).
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The model

W(1) W(2 / g
@ R(0) @ R @)

Network for two processes (self-loops omitted).

m There exist paths from there, the processes in gg are trapped;
m [here exist paths that reach g¢. ..
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m A configuration s€ S is a multiset of states + a register value
veo, [ :

m Parameter: once the system is started, the configuration has a
fixed size;

m Interleaving semantics;
m Non-atomic operations (read or write at a time);

,\J’ e

m Goal: reach a configuration which covers gy.
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m A configuration s€ S is a multiset of states + a register value
veo, [ :

m Parameter: once the system is started, the configuration has a
fixed size;

m Interleaving semantics;

lmic operations (read or write at a time); )
m Goal: Mﬁﬁmmh covers qr.

m Semantics:

m How does the scheduler work 7
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Non-deterministic Scheduler Case:
Reachability /Safety

m The scheduler is helpful;

m Monotonicity: if gr is reachable with n initial processes, it is with
n+1;
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Non-deterministic Scheduler Case:
Reachability /Safety

m The scheduler is helpful;

m Monotonicity: if gr is reachable with n initial processes, it is with
n+1;

m ...and there exists a witness of polynomial size.
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Theorem (EGM13)
Given a protocol, if any, there exists a polynomial path that covers qr .



Non-deterministic Scheduler Case:
Reachability /Safety

m The scheduler is helpful;

m Monotonicity: if gr is reachable with n initial processes, it is with
n+1;

m ...and there exists a witness of polynomial size.

X X X v v v v ../

1 2 3 4 5 6 I 3

> N

Theorem (EGM13)
Given a protocol, if any, there exists a polynomial path that covers qr .

Proof: check last appearance e/ndﬁw f each control state...



Non-deterministic Scheduler Case:
Reachability /Safety

m The scheduler is helpful;

m Monotonicity: if gr is reachable with n initial processes, it is with
n+1;

m ...and there exists a witness of polynomial size.

X X X v v v v ../

1 2 3 4 5 6 I 3

> N

Theorem (EGM13)
Given a protocol, if any, there exists a polynomial path that covers qr .

Proof: check last appearance and dis-appearance of each control state...
Gives a bound on the runtime of the backward coverability algorithm.



Fair, Probabilistic scheduler

m We don't control the scheduler anymore;
0 behaviour (environment);

m Finite patterns cannot be repeated infinetely often:;

?
m We consider almost-sure reachability: P,(¢1gr)=1
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Fair, Probabilistic scheduler

m We don't control the scheduler anymore;
0 behaviour (environment);

m Finite patterns cannot be repeated infinetely often:;

?
m We consider almost-sure reachability: P,(¢1gr)=1
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Fair, Probabilistic scheduler

m We don't control the scheduler anymore;
0 behaviour (environment);

m Finite patterns cannot be repeated infinetely often:;

?
m We consider almost-sure reachability: P,(¢1gr)=1

1/2 1/2

12 12
Qualitative property
_I_

Finite configuration space

Exact probability values are
not relevant.
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Lack of monotonicity
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—> Additional processes can create new deadlocks!
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Probabilistic Cut-off and WQO relation

We study the cut-off for the following ¢ property:
@:=P(o1gr)=1

Theorem (Admitted)

Pr(o1gr)=1

if, and only if,

Post™ (I nS-y) < P@
./ e
Proof (sketch): If P,(o1gr) =1, then any reachable'state se€ S is

reached with positive probability so should still reach 1gf with probability
1, in particular s € Pre*(1qr). Let's prove the reverse implication:
Assume Post™(InS_,) < Pre™(1gr), then:

m For any reachable state s, there exists a path to reach 1gf so the
probability for this to happen is some positive number f(s) > 0.




Probabilistic Cut-off and WQO relation

We study the cut-off for the following ¢ property:
@:=P(o1gr)=1

Theorem (Admitted)

Pr(o1gr)=1

if, and only if,
Post™ (I nS-x) < Pre*(1qr)

Proof (sketch): If P,(o1gr) =1, then any reachable state se€ S is
reached with positive probability so should still reach 1gf with probability
1, in particular s € Pre*(1qr). Let's prove the reverse implication:
Assume Post™(InS_,) < Pre™(1gr), then:
m For any reachable state s, there exists a path to reach 1gf so the
probability for this to happen is some positive number f(s) > 0.
m At any time point, the probability of eventually reaching 1gr is at
least maxses, f(s) which is positive since Sy is finite.
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Examples
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w(2) ~e. W(nD)
WCETO .. - - B
R(0) R(1) R(2) R(n-2) R(n-1)

“Filter” protocol %, for n> 0.

For protocol %,
> networks of size = n cover s, with probability 1,
> networks of size < n cannot cover s,.

No deadlock can ever occur as all processes can always go back to the
initial state.

—> Tight positive cut-off equal to n, i.e., linear in the protocol
size.
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For any register protocol &2 there always exists a cut-off for
almost-sure reachability

/\ This result strongly relies on the fact that both (S,=<,—) and
(S,=<,—71) are WSTS



Existence of a cut-off

Theorem
For any register protocol &2 there always exists a cut-off for
almost-sure reachability

The non-atomicity guarantees that when a process takes a transition, all
processes in the same state can also take the same transition (with a
non-zero probability).

—> a.k.a. copycat lemma.
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Existence: quick sketch (1/2)

m Write Pre™(1qr) € S the set of configurations that can reach gr;

m Write Post (/N S5,) €S the set of reachable configurations of size
=N,

E—
Positive cut-off: Negative cut-off:
dn Post™(INnSsp) € Pre®(1qf) Vn Post™(INS=,) € Pre*(1qr)

N—— e

m Consider < point-wise order over configurations, with state-value
support equality.

@) » E@(-) = @@ ~
ICI2

m (5,x) is a well-quasi-ordered set; \

M OaPre'nd iPost*(gf\are upward-closed for any n;




Existence: quick sketch (2/2)

Post*(/nS-1) =11{01,...,0;} and Pre® =1 {n1,...,nm}.
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Existence: quick sketch (2/2)

Post*(INSs1)=1101,...,0;} and Pre* =1{n1,...,nm}.
Is Post™ (I nS=p) eventually included in Pre® 7
—> A bit technical... A more general results applies on
systems that are WSTS in both directions

g . . . intuitively, the goal is to check if
A s
elements of Post™(/ nSs,) can enter
Pre* by adding sufficiently many
processes in a given state.

N1
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Lemmal. Let (S, 1, <,|.)) a parameterised system such that
1. (S,<,—71) isa WSTS;

2. Foranys,s' € S with s < s' and for any k € [|s|,|s'], there exists t of size k such
thats<t=<s'.

Then for any upward closed set U, there exists N such that, either
Vik=N,Post*(INS_p) cU

either,
Vk=N,Post*(INS_) 2 U

Proof. Let K = {k | Post*(INS-) € U}.
¢ If K is finite, take N = 1+ maxK. Then Vk = N,Post*(INnS-;) < U.

¢ If K is infinite, for any k € K, let iy € I N S_¢ and sy € Post* (ix)\U. Since (S, <)
is a WQO, we can extract an infinite subset K’ < K such that for all k;, k, € K’
with ki < ko, iy, < i, butalso (by extracting another subsequence), x, < X, .
We take n = min K, for any k = N, since K’ is infinite, there exists k' € K’ such
that n < k < k/. Since x,, < xp there exists x; such that x, < x; < xp with
|x¢| = k. Since i,, =* x, < x; and (S, =<,—"1) is a WQO, there exists i; such
that i,, < i —* x; hence xj. € Post* (I N S—). Moreover, U is downward closed
soxx € U.

O



