Parameterised Systems

Daniel Stan, Automated Reasoning group, TUK

Parameterised System

Motivations: analysis of a whole family of systems $(\mathscr{S}_p)_p$. $p \in Param$ is a parameter.

- Synthesis: "Does there exists $p \in Param$ such that $\mathscr{S}_p \models \phi$?"
- Validity: "Does $\mathscr{S}_p \vDash \varphi$ for all p?"

Parameterised System

Different types of parameters:

- Guard constants values (in timed automata):
 Param ⊆ ℝ⁺;
- Probability values (in stochastic systems): Param ⊆ [0,1];
- •••
- Number of interacting copies of processes: $Param = \mathbb{N}$.

Parameterised System

Different types of parameters:

- Guard constants values (in timed automata):
 Param ⊆ ℝ⁺;
- Probability values (in stochastic systems): Param ⊆ [0,1];
- •••
- Number of interacting copies of processes: $Param = \mathbb{N}$.

Today: **Validity** of parameterised systems composed with **arbitrary many copies** using **well-quasi order** techniques.

Arbitrary many copies

Arbitrary many copies

Definition

A parameterised system $\mathscr{S} = (S, I, \Sigma, \rightarrow)$ is a LTS (S, Σ, \rightarrow) equipped with

- A WQO \leq over *S*;
- An upward-closed set of initial states *I*;
- A norm function $|.|: S \to \mathbb{N}$ such that $\forall (s, t), s \le t \Rightarrow |s| \le |t|$

We write $S_k = \{s \in S \mid |s| = k\}$ and \mathscr{S}_k the LTS restricted to initial states in $I \cap S_k$.

Arbitrary many copies

Definition

A parameterised system $\mathscr{S} = (S, I, \Sigma, \rightarrow)$ is a LTS (S, Σ, \rightarrow) equipped with

• A WQO \leq over *S*;

An upward-closed set of initial states *I*;

• A norm function $|.|: S \to \mathbb{N}$ such that $\forall (s, t), s \le t \Rightarrow |s| \le |t|$.

We write $S_k = \{s \in S \mid |s| = k\}$ and \mathscr{S}_k the LTS restricted to initial states in $I \cap S_k$.

Not necessarily a WSTS!

Some Petri Net example

|M| is not necessarily the number of tokens in M.

Parameterised Systems (Our definition today)

Definition

A parameterised system $\mathscr{S} = (S, I, \Sigma, \rightarrow)$ is a LTS (S, Σ, \rightarrow) equipped with

• A WQO \leq over *S*;

An upward-closed set of initial states *I*;

- A norm function $|.|: S \to \mathbb{N}$ such that $\forall (s, t), s \le t \Rightarrow |s| \le |t|$.
- \blacksquare \rightarrow preserves the norm
- S_k is finite for any k.

We write $S_k = \{s \in S \mid |s| = k\}$ and \mathcal{S}_k the LTS restricted to initial states in $I \cap S_k$.

Definition

A parameterised system $(\mathscr{S}_n)_n$ has a **cut-off property** for φ if there exists a **cut-off bound** $n \in \mathbb{N}$, such that

$$\forall k > n, \mathscr{S}_k \vDash \varphi \Leftrightarrow \mathscr{S}_n \vDash \varphi$$

Namely, one of the two situations can happen:

Definition

A parameterised system $(\mathscr{S}_n)_n$ has a **cut-off property** for φ if there exists a **cut-off bound** $n \in \mathbb{N}$, such that

 $\forall k > n, \mathcal{S}_k \vDash \varphi \Leftrightarrow \mathcal{S}_n \vDash \varphi$

Namely, one of the two situations can happen:

• $\forall n \ge k \ \mathscr{S}_n \vDash \varphi$: **Positive** cut-off;

Definition

A parameterised system $(\mathscr{S}_n)_n$ has a **cut-off property** for φ if there exists a **cut-off bound** $n \in \mathbb{N}$, such that

$$\forall k > n, \mathcal{S}_k \vDash \varphi \Leftrightarrow \mathcal{S}_n \vDash \varphi$$

Namely, one of the two situations can happen:

• $\forall n \ge k \ \mathscr{S}_n \vDash \varphi$: **Positive** cut-off;

$$\frac{\mathbf{X}}{1} \quad \frac{\mathbf{X}}{2} \quad \frac{\mathbf{X}}{3} \quad \frac{\mathbf{X}}{\underline{11}} \quad \underline{12} \quad \underline{13} \quad \underline{14} \quad \cdots \quad \mathbf{n}$$

Definition

A parameterised system $(\mathscr{S}_n)_n$ has a **cut-off property** for φ if there exists a **cut-off bound** $n \in \mathbb{N}$, such that

$$\forall k > n, \mathcal{S}_k \vDash \varphi \Leftrightarrow \mathcal{S}_n \vDash \varphi$$

Namely, one of the two situations can happen:

• $\forall n \ge k \ \mathscr{S}_n \vDash \varphi$: **Positive** cut-off;

• $\forall n \ge k \ \mathscr{S}_n \nvDash \varphi$: **Negative** cut-off;

Definition

A parameterised system $(\mathscr{S}_n)_n$ has a **cut-off property** for φ if there exists a **cut-off bound** $n \in \mathbb{N}$, such that

$$\forall k > n, \mathcal{S}_k \vDash \varphi \Leftrightarrow \mathcal{S}_n \vDash \varphi$$

Namely, one of the two situations can happen:

 $\forall n \ge k \ \mathscr{S}_n \vDash \varphi: \text{ Positive cut-off;}$ $\underbrace{\begin{array}{c} X & \sqrt{x} \\ 1 & 2 \\ \end{array}}_{1 & 2 \\ \end{array}} \underbrace{\begin{array}{c} X & \sqrt{x} \\ 1 \\ \end{array}}_{1 & 2 \\ \end{array}} \underbrace{\begin{array}{c} Y \\ 1 \\ \end{array}}_{1 & 2 \\ \end{array}} \underbrace{\begin{array}{c} X & \sqrt{x} \\ 1 \\ \end{array}}_{1 & 2 \\ \end{array}} \underbrace{\begin{array}{c} X & \sqrt{x} \\ 1 \\ \end{array}}_{1 & 2 \\ \end{array}} \underbrace{\begin{array}{c} X & \chi \\ 1 \\ \end{array}}_{1 & 2 \\ \end{array}} \underbrace{\begin{array}{c} X & \chi \\ 1 \\ \end{array}}_{1 & 2 \\ \end{array}} \underbrace{\begin{array}{c} X & \chi \\ 1 \\ \end{array}}_{1 & 2 \\ \end{array}} \underbrace{\begin{array}{c} X & \chi \\ 1 \\ \end{array}}_{1 & 2 \\ \end{array}} \underbrace{\begin{array}{c} X & \chi \\ 1 \\ \end{array}}_{1 & 2 \\ \end{array}} \underbrace{\begin{array}{c} X & \chi \\ 1 \\ \end{array}}_{1 & 2 \\ \end{array}} \underbrace{\begin{array}{c} X & \chi \\ 1 \\ \end{array}}_{1 & 2 \\ \end{array}} \underbrace{\begin{array}{c} X & \chi \\ 1 \\ \end{array}}_{1 & 2 \\ \end{array}} \underbrace{\begin{array}{c} X & \chi \\ 1 \\ \end{array}}_{1 & 2 \\ \end{array}} \underbrace{\begin{array}{c} X & \chi \\ 1 \\ \end{array}}_{1 & 2 \\ \underbrace{\begin{array}{c} X & \chi \\ 1 \\ \end{array}}_{1 & 2 \\ \end{array}} \underbrace{\begin{array}{c} X & \chi \\ X \\ \end{array}}_{1 & 2 \\ \end{array}}_{1 & 2 \\ \underbrace{\begin{array}{c} X & \chi \\ 1 \\ \end{array}}_{1 & 2 \\ \end{array}}_{1 & 2 \\ \underbrace{\begin{array}{c} X & \chi \\ 1 \\ \end{array}}_{1 & 2 \\ \end{array}}_{1 & 2 \\ \underbrace{\begin{array}{c} X & \chi \\ 1 \\ \end{array}}_{1 & 2 \\ \underbrace{\begin{array}{c} X & \chi \\ 1 \\ \end{array}}_{1 & 2 \\ \underbrace{\begin{array}{c} X & \chi \\ 1 \\ \end{array}}_{1 & 2 \\ \underbrace{\begin{array}{c} X & \chi \\ 1 \\ \underbrace{\begin{array}{c} X & \chi \\ 1 \\ 1 \end{array}}_{1 & 2 \\ \underbrace{\begin{array}{c} X & \chi \\ 1 \\ \underbrace{\begin{array}{c} X & \chi \\ 1 \\ \underbrace{\begin{array}{c} X & \chi \\ 1 \\ 1 \end{array}}_{1 & 2 \\ \underbrace{\begin{array}{c} X & \chi \\ 1 \\ 1 \end{array}}_{1 & 2 \\ \underbrace{\begin{array}{c} X & \chi \\ 1 \\ 1 \end{array}}_{1 & 2 \\ \underbrace{\begin{array}{c} X & \chi \\ 1 \\ \underbrace{\begin{array}{c} X & \chi \\ 1 \\ 1 \end{array}}_{1 & 2 \\ \underbrace{\begin{array}{c} X & \chi \\ 1 \\ 1 \end{array}}_{1 & 2 \\ \underbrace{\begin{array}{c} X & \chi \\ 1 \\ 1 \end{array}}_{1 & 2 \\ \underbrace{\begin{array}{c} X & \chi \\ 1 \\ 1 \end{array}}_{1 & 2 \\ \underbrace{\begin{array}{c} X & \chi \\ 1 \\ 1 \end{array}}_{1 & 2 \\ \underbrace{\begin{array}{c} X & \chi \\ 1 \\ 1 \end{array}}_{1 & 2 \\ \underbrace{\begin{array}{c} X & \chi \\ 1 \\ 1 \end{array}}_{1 & 2 \\ \underbrace{\begin{array}{c} X & \chi \\ 1 \\ 1 \end{array}}_{1 & 2 \\ \underbrace{\begin{array}{c} X & \chi \\ 1 \\ 1 \end{array}}_{1 & 2 \\ \underbrace{\begin{array}{c} X & \chi \\ 1 \\ 1 \end{array}}_{1 & 2 \\ \underbrace{\begin{array}{c} X & \chi \\ 1 \\ 1 \end{array}}_{1 & 2 \\ \underbrace{\begin{array}{c} X & \chi \\ 1 \\ 1 \end{array}}_{1 & 2 \\ \underbrace{\begin{array}{c} X & \chi \\ 1 \\ 1 \end{array}}_{1 & 2 \\ \underbrace{\begin{array}{c} X & \chi \\ 1 \\ 1 \end{array}}_{1 & 2 \\ \underbrace{\begin{array}{c} X & \chi \\ 1 \\ 1 \end{array}}_{1 & 2 \\ \underbrace{\begin{array}{c} X & \chi \\ 1 \\ 1 \end{array}}_{1 & 2 \\ \underbrace{\begin{array}{c} X & \chi \\ 1 \\ \underbrace{\begin{array}{c} X & \chi \\ 1 \\ 1 \end{array}}_{1 & 1 \\ \underbrace{\begin{array}{c} X & \chi \\ 1 \\ \underbrace{\begin{array}{c} X & \chi \\ 1 \\ \underbrace{\begin{array}{c} X & \chi \\ 1 \end{array}}_{1 \\ \underbrace{\begin{array}{c} X & \chi \\ 1 \\ 1 \\ \underbrace{\begin{array}{c} X & \chi \\ 1 \\ \underbrace{\begin{array}{c} X & \chi \\ 1 \\ \underbrace{\begin{array}{c} X & \chi \\ 1 \\ 1 \\ \underbrace{\begin{array}{c} X & \chi \\ 1 \\ 1 \\ \underbrace{\begin{array}{c} X$

Cut-off point for coverability Safety in Petri Net

Problem: Given a Petri *N*, with a set of upward-closed initial marking $I = \uparrow p_0$ and an upward closed set *Bad*. Is there a marking $M \in I$ that can reach *Bad*?

Problem: Given a Petri *N*, with a set of upward-closed initial marking $I = \uparrow p_0$ and an upward closed set *Bad*. Is there a marking $M \in I$ that can reach *Bad*?

• Karp-Miller tree from $M_0 = \omega \cdot p_0$.

Problem: Given a Petri *N*, with a set of upward-closed initial marking $I = \uparrow p_0$ and an upward closed set *Bad*. Is there a marking $M \in I$ that can reach *Bad*?

- Karp-Miller tree from $M_0 = \omega \cdot p_0$.
- (Recall week 3): for any M, if there is M' in *KarpMillerTree*(N) with $M \le M'$, then N can cover M.

Problem: Given a Petri *N*, with a set of upward-closed initial marking $I = \uparrow p_0$ and an upward closed set *Bad*. Is there a marking $M \in I$ that can reach *Bad*?

- Karp-Miller tree from $M_0 = \omega \cdot p_0$.
- (Recall week 3): for any M, if there is M' in *KarpMillerTree*(N) with $M \le M'$, then N can cover M.
- **Conclusion**: the problem is EXPSPACE-complete.

Recall: Backward coverability for WSTS

function BackCoverFormal(*N*, *p*₀, *Bad*, ≤) *U* ← Bad **U'** ← Ø while $U \neq U'$ do $U \leftarrow U \cup \operatorname{Pre}(U)$ $return \exists k : k \cdot p_0 \in U$ $I \cup A t a y = 0$ $I \cup A t a y = 0$ *U′* ← *U*

Non-atomic operations on shared variables

Inspired by:

 Model checking parameterized asynchronous shared-memory systems.

Antoine Durand-Gasselin, Javier Esparza, Pierre Ganty, Rupak Majumdar, 2017

 Reachability in Networks of Register Protocols under Stochastic Schedulers
 Patricia Bouyer, Nicolas Markey, Mickael Randour, Arnaud Sangnier, Daniel Stan, 2016

R(1)R(0)R(2)Register protocol with $D = \{0, 1, 2\}$.

*q*₂

W(2)

 q_1

W(2)

 q_f

Definition: register protocol

- $\mathscr{P} = \langle Q, D, q_0, d_0, q_f, T \rangle$
 - \triangleleft $\langle Q, q_0, q_f, T \rangle$ is a finite state automaton;

 q_0

- D finite dataset for the shared register;
- d_0 an initial value;
- $T \subseteq Q \times \{R, W\} \times D \times Q$ set of transitions, labelled by read and write operations over D.

(Non-exhaustive construction)

(Non-exhaustive construction)

Network for two processes (self-loops omitted).

(Non-exhaustive construction)

Network for two processes (self-loops omitted).

(Non-exhaustive construction)

(Non-exhaustive construction)

⁽Non-exhaustive construction)

- There exist paths from there, the processes in q_0 are trapped;
- There exist paths that reach q_f ...
- ...and they require at least two processes.

ι.

- A configuration $s \in S$ is a multiset of states + a register value $d \in D$; $0 \quad 0 \quad 0 \quad 0 \quad 0$
- Parameter: once the system is started, the configuration has a fixed size;
- Interleaving semantics;
- Non-atomic operations (read or write at a time);
- Goal: reach a configuration which covers q_f .

- A configuration $s \in S$ is a multiset of states + a register value $d \in D$; $0 \quad 0 \quad 0 \quad 0 \quad 0$
- Parameter: once the system is started, the configuration has a fixed size;
- Interleaving semantics;
- **Non-atomic** operations (read <u>or</u> write at a time);
- Goal: reach a configuration which covers q_f .
- Semantics:

- A configuration $s \in S$ is a multiset of states + a register value $d \in D$; $0 \quad 0 \quad 0 \quad 0 \quad 0$
- Parameter: once the system is started, the configuration has a fixed size;
- Interleaving semantics;

Non-atomic operations (read <u>or</u> write at a time);

- Goal: reach a configuration which **covers** q_f.
- Semantics:

- The scheduler is **helpful**;
- **Monotonicity:** if q_f is reachable with *n* initial processes, it is with n+1;

 $\rightarrow n$

- The scheduler is **helpful**;
- Monotonicity: if q_f is reachable with *n* initial processes, it is with n+1;

- The scheduler is **helpful**;
- Monotonicity: if q_f is reachable with *n* initial processes, it is with n+1;

- The scheduler is **helpful**;
- Monotonicity: if q_f is reachable with *n* initial processes, it is with n+1;

- The scheduler is **helpful**;
- Monotonicity: if q_f is reachable with n initial processes, it is with n+1;

- The scheduler is **helpful**;
- Monotonicity: if q_f is reachable with *n* initial processes, it is with n+1;
- ...and there exists a witness of polynomial size.

Theorem (EGM13)

Given a protocol, if any, there exists a **polynomial** path that covers q_f .

- The scheduler is **helpful**;
- Monotonicity: if q_f is reachable with *n* initial processes, it is with n+1;
- ...and there exists a witness of polynomial size.

Theorem (EGM13)

Given a protocol, if any, there exists a **polynomial** path that covers q_f . **Proof**: check last appearance and dis-appearance of each control state...

- The scheduler is **helpful**;
- Monotonicity: if q_f is reachable with n initial processes, it is with n+1;
- ...and there exists a witness of polynomial size.

Theorem (EGM13)

Given a protocol, if any, there exists a **polynomial** path that covers q_f .

Proof: check last appearance and dis-appearance of each control state... Gives a bound on the runtime of the backward coverability algorithm.

- We don't control the scheduler anymore;
- **Stochastic** behaviour (environment);
- Finite patterns cannot be repeated infinetely often;
- We consider **almost-sure** reachability: $\mathbb{P}_n(\diamond \uparrow q_f) \stackrel{?}{=} 1$

- We don't control the scheduler anymore;
- Stochastic behaviour (environment);
- Finite patterns cannot be repeated infinetely often;
- We consider **almost-sure** reachability: $\mathbb{P}_n(\diamond \uparrow q_f) \stackrel{?}{=} 1$

- We don't control the scheduler anymore;
- Stochastic behaviour (environment);
- Finite patterns cannot be repeated infinetely often;
- We consider **almost-sure** reachability: $\mathbb{P}_n(\diamond \uparrow q_f) \stackrel{?}{=} 1$

- We don't control the scheduler anymore;
- Stochastic behaviour (environment);
- Finite patterns cannot be repeated infinetely often;
- We consider **almost-sure** reachability: $\mathbb{P}_n(\diamond \uparrow q_f) \stackrel{?}{=} 1$

Lack of monotonicity

⇒ Additional processes can create new deadlocks!

Lack of monotonicity

⇒ Additional processes can create new deadlocks!

We study the cut-off for the following φ property:

 $\varphi := \mathbb{P}(\diamond \uparrow q_f) = 1$

We study the cut-off for the following φ property:

 $\varphi := \mathbb{P}(\diamond \uparrow q_f) = 1$

Theorem (Admitted)

 $\mathbb{P}_k(\diamond \uparrow q_f) = 1$

if, and only if,

 $Post^*(I \cap S_{=k}) \subseteq Pre^*(\uparrow q_f)$

We study the cut-off for the following φ property:

 $\varphi := \mathbb{P}(\diamond \uparrow q_f) = 1$

Theorem (Admitted)

 $\mathbb{P}_k(\diamond \uparrow q_f) = 1$

if, and only if,

 $Post^*(I \cap S_{=k}) \subseteq Pre^*(\uparrow q_f)$

Proof (sketch):

We study the cut-off for the following φ property:

 $\varphi := \mathbb{P}(\diamond \uparrow q_f) = 1$

Theorem (Admitted)

$$\mathbb{P}_k(\diamond \uparrow q_f) = 1$$

if, and only if,

 $Post^*(I \cap S_{=k}) \subseteq \underline{Pre^*(\uparrow q_f)}$

Proof (sketch): If $\mathbb{P}_k(\diamond \uparrow q_f) = 1$, then any reachable state $s \in S_k$ is reached with positive probability so should still reach $\uparrow q_f$ with probability 1, in particular $s \in \operatorname{Pre}^*(\uparrow q_f)$. Let's prove the reverse implication: Assume $\operatorname{Post}^*(I \cap S_{=k}) \subseteq \operatorname{Pre}^*(\uparrow q_f)$, then:

For any reachable state s, there exists a path to reach $\uparrow q_f$ so the probability for this to happen is some positive number f(s) > 0.

We study the cut-off for the following φ property:

 $\varphi := \mathbb{P}(\diamond \uparrow q_f) = 1$

Theorem (Admitted)

 $\mathbb{P}_k(\diamond \uparrow q_f) = 1$

if, and only if,

$$Post^*(I \cap S_{=k}) \subseteq Pre^*(\uparrow q_f)$$

Proof (sketch): If $\mathbb{P}_k(\diamond \uparrow q_f) = 1$, then any reachable state $s \in S_k$ is reached with positive probability so should still reach $\uparrow q_f$ with probability 1, in particular $s \in \operatorname{Pre}^*(\uparrow q_f)$. Let's prove the reverse implication: Assume $\operatorname{Post}^*(I \cap S_{=k}) \subseteq \operatorname{Pre}^*(\uparrow q_f)$, then:

- For any reachable state s, there exists a path to reach $\uparrow q_f$ so the probability for this to happen is some positive number f(s) > 0.
- At any time point, the probability of eventually reaching $\uparrow q_f$ is at least $\max_{s \in S_k} f(s)$ which is **positive** since S_k is **finite**.

Examples

Examples

For protocol \mathcal{F}_n ,

- ▷ networks of size $\ge n$ cover s_n with probability 1,
- \triangleright networks of size < *n* cannot cover *s_n*.

No deadlock can ever occur as all processes can always go back to the initial state.

Examples

For protocol \mathcal{F}_n ,

- ▷ networks of size $\ge n$ cover s_n with probability 1,
- ▷ networks of size < n cannot cover s_n .

No deadlock can ever occur as all processes can always go back to the initial state.

⇒ Tight positive cut-off equal to *n*, i.e., linear in the protocol size.

Existence of a cut-off

Theorem For any register protocol \mathscr{P} **there always exists a cut-off for almost-sure reachability**

Existence of a cut-off

Theorem

For any register protocol \mathscr{P} there always exists a cut-off for almost-sure reachability

A This result strongly relies on the fact that **both** (S, \leq, \rightarrow) and $(S, \leq, \rightarrow^{-1})$ **are WSTS**

Existence of a cut-off

Theorem

For any register protocol *P* there always exists a cut-off for almost-sure reachability

⚠ This result strongly relies on the fact that **both** (S, \leq, \rightarrow) and $(S, \leq, \rightarrow^{-1})$ **are WSTS**

The non-atomicity guarantees that when a process takes a transition, all processes in the same state can also take the same transition (with a non-zero probability).

 \Rightarrow a.k.a. copycat lemma.

- Write $\operatorname{Pre}^*(\uparrow q_f) \subseteq S$ the set of configurations that can reach q_f ;
- Write Post $*(I \cap S_{\geq n}) \subseteq S$ the set of reachable configurations of size $\geq n$;

- Write $\operatorname{Pre}^*(\uparrow q_f) \subseteq S$ the set of configurations that can reach q_f ;
- Write Post $*(I \cap S_{\geq n}) \subseteq S$ the set of <u>reachable configurations</u> of size $\geq n$;

Positive cut-off:
 $\exists n \operatorname{Post}^*(I \cap S_{\geq n}) \subseteq \operatorname{Pre}^*(\uparrow q_f)$ Negative cut-off:
 $\boxtimes \operatorname{Post}^*(I \cap S_{=h}) \not\subseteq \operatorname{Pre}^*(\uparrow q_f)$ $M \forall l \geq M$

- Write $\operatorname{Pre}^*(\uparrow q_f) \subseteq S$ the set of configurations that can reach q_f ;
- Write Post * (I ∩ S≥n) ⊆ S the set of reachable configurations of size ≥ n;

Positive cut-off:Negative cut-off: $\exists n \operatorname{Post}^*(I \cap S_{\geq n}) \subseteq \operatorname{Pre}^*(\uparrow q_f) \forall n \operatorname{Post}^*(I \cap S_{=n}) \not\subseteq \operatorname{Pre}^*(\uparrow q_f)$

■ Consider ≤ point-wise order over configurations, with state-value support equality.

- Write $\operatorname{Pre}^*(\uparrow q_f) \subseteq S$ the set of configurations that can reach q_f ;
- Write Post $*(I \cap S_{\geq n}) \subseteq S$ the set of reachable configurations of size $\geq n$;

Positive cut-off:Negative cut-off: $\exists n \operatorname{Post}^*(I \cap S_{\geq n}) \subseteq \operatorname{Pre}^*(\uparrow q_f) \forall n \operatorname{Post}^*(I \cap S_{=n}) \not\subseteq \operatorname{Pre}^*(\uparrow q_f)$

■ Consider ≤ point-wise order over configurations, with state-value support equality.

- Write $\operatorname{Pre}^*(\uparrow q_f) \subseteq S$ the set of configurations that can reach q_f ;
- Write Post $*(I \cap S_{\geq n}) \subseteq S$ the set of reachable configurations of size $\geq n$;

Positive cut-off:Negative cut-off: $\exists n \operatorname{Post}^*(I \cap S_{\geq n}) \subseteq \operatorname{Pre}^*(\uparrow q_f) \forall n \operatorname{Post}^*(I \cap S_{=n}) \not\subseteq \operatorname{Pre}^*(\uparrow q_f)$

■ Consider ≤ point-wise order over configurations, with state-value support equality.

$$\begin{bmatrix} 0 & q_0 & q_1 \\ \not \leq & 1 & q_0 & q_1 \\ 1 & q_0 & q_1 & q_1 \\ 1 & q_0 & q_1 & q_1 \\ 1 & q_0 & q_1 & q_2 \end{bmatrix} \preceq \begin{bmatrix} 1 & q_0 & q_1 & q_1 \\ g_0 & g_1 & g_2 \\ g_1 & g_2 \end{bmatrix}$$

(S,≤) is a well-quasi-ordered set;
 Pre* and Post*(S≥n) are upward-closed for any n;

1 $\underline{\mathsf{Post}^*(I \cap S_{\geq 1})} = \uparrow \{\theta_1, \dots, \theta_l\} \text{ and } \mathsf{Pre}^* = \uparrow \{\eta_1, \dots, \eta_m\}.$

1 Post^{*} $(I \cap S_{\geq 1}) = \uparrow \{\theta_1, \dots, \theta_l\}$ and Pre^{*} = $\uparrow \{\eta_1, \dots, \eta_m\}$.

2 Is $Post^*(I \cap S_{\geq n})$ eventually included in Pre^* ?

 \implies A bit technical...

1 Post^{*} $(I \cap S_{\geq 1}) = \uparrow \{\theta_1, \dots, \theta_l\}$ and Pre^{*} = $\uparrow \{\eta_1, \dots, \eta_m\}$.

2 Is $Post^*(I \cap S_{\geq n})$ eventually included in Pre^* ?

⇒ A bit technical... A more general results applies on systems that are WSTS in both directions

1 Post^{*} $(I \cap S_{\geq 1}) = \uparrow \{\theta_1, \dots, \theta_l\}$ and Pre^{*} = $\uparrow \{\eta_1, \dots, \eta_m\}$.

2 Is $Post^*(I \cap S_{\geq n})$ eventually included in Pre^* ?

⇒ A bit technical... A more general results applies on systems that are WSTS in both directions

... intuitively, the goal is to check if elements of $\text{Post}^*(I \cap S_{\geq n})$ can enter Pre^* by adding sufficiently many processes in a given state. **Lemma 1.** Let $(S, I, \leq, |.|)$ a parameterised system such that

- 1. $(S, \leq, \rightarrow^{-1})$ is a WSTS;
- 2. For any $s, s' \in S$ with $s \leq s'$ and for any $k \in [|s|, |s']$, there exists t of size k such that $s \leq t \leq s'$.

Then for any upward closed set U, there exists N such that, either

$$\forall k \geq N, \text{Post}^* (I \cap S_{=k}) \subseteq U$$

either,

$$\forall k \geq N, \text{Post}^* (I \cap S_{=k}) \not\subseteq U$$

Proof. Let $K = \{k \mid \text{Post}^* (I \cap S_{=k}) \not\subseteq U\}$.

- If *K* is finite, take $N = 1 + \max K$. Then $\forall k \ge N$, Post^{*} $(I \cap S_{=k}) \subseteq U$.
- If *K* is infinite, for any $k \in K$, let $i_k \in I \cap S_{=k}$ and $s_k \in \text{Post}^*(i_k) \setminus U$. Since (S, \leq) is a WQO, we can extract an infinite subset $K' \subset K$ such that for all $k_1, k_2 \in K'$ with $k_1 \leq k_2, i_{k_1} \leq i_{k_2}$ but also (by extracting another subsequence), $x_{k_1} \leq x_{k_2}$. We take $n = \min K$, for any $k \geq N$, since K' is infinite, there exists $k' \in K'$ such that $n \leq k \leq k'$. Since $x_n \leq x_{k'}$ there exists x_k such that $x_n \leq x_k \leq x_{k'}$ with $|x_k| = k$. Since $i_n \rightarrow^* x_n \leq x_k$ and $(S, \leq, \rightarrow^{-1})$ is a WQO, there exists i_k such that $i_n \leq i_k \rightarrow^* x_k$ hence $x_k \in \text{Post}^*(I \cap S_{=k})$. Moreover, \overline{U} is downward closed so $x_k \notin U$.

