
Parameterised Systems

Daniel Stan, Automated Reasoning group, TUK

Parameterised System

Motivations: analysis of a whole family of systems
(Sp)p.
p ∈Param is a parameter.

Synthesis: “Does there exists p ∈Param such
that Sp �ϕ?”
Validity: “Does Sp �ϕ for all p?”

Parameterised System

Different types of parameters:
Guard constants values (in timed automata):
Param⊆R+;
Probability values (in stochastic systems):
Param⊆ [0,1];
. . .

Number of interacting copies of processes:
Param=N.

Parameterised System

Different types of parameters:
Guard constants values (in timed automata):
Param⊆R+;
Probability values (in stochastic systems):
Param⊆ [0,1];
. . .

Number of interacting copies of processes:
Param=N.

Today: Validity of parameterised systems
composed with arbitrary many copies using
well-quasi order techniques.

Arbitrary many copies

Arbitrary many copies

Definition
A parameterised system S = (S , I ,Σ,→) is a LTS (S ,Σ,→) equipped with

A WQO � over S ;
An upward-closed set of initial states I ;
A norm function |.| : S →N such that ∀(s ,t),s ≤ t ⇒ |s |≤ |t|.

We write Sk = {s ∈ S | |s | = k} and Sk the LTS restricted to initial states
in I ∩Sk .

Arbitrary many copies

Definition
A parameterised system S = (S , I ,Σ,→) is a LTS (S ,Σ,→) equipped with

A WQO � over S ;
An upward-closed set of initial states I ;
A norm function |.| : S →N such that ∀(s ,t),s ≤ t ⇒ |s |≤ |t|.

We write Sk = {s ∈ S | |s | = k} and Sk the LTS restricted to initial states
in I ∩Sk .
Not necessarily a WSTS!

Some Petri Net example

I = {k ·p0 | k ∈N},
|M | = ...,
M �M � if ∀p ∈P ,M(p)≤M �(p)

Some Petri Net example

I = {k ·p0 | k ∈N},
|M | = ...,
M �M � if ∀p ∈P ,M(p)≤M �(p) and
support (M)= {p | M(p)> 0} = {p | M �(p)> 0} = support (M �).
(still a WQO)
Remark:
|M | is not necessarily the number of tokens in M.

Parameterised Systems (Our definition today)

Definition
A parameterised system S = (S , I ,Σ,→) is a LTS (S ,Σ,→) equipped with

A WQO � over S ;
An upward-closed set of initial states I ;
A norm function |.| : S →N such that ∀(s ,t),s ≤ t ⇒ |s |≤ |t|.
→ preserves the norm
Sk is finite for any k.

We write Sk = {s ∈ S | |s | = k} and Sk the LTS restricted to initial states
in I ∩Sk .

Cut-off property

Definition
A parameterised system (Sn)n has a cut-off property for ϕ if there
exists a cut-off bound n ∈N, such that

∀k > n,Sk �ϕ⇔Sn �ϕ

Namely, one of the two situations can happen:

Cut-off property

Definition
A parameterised system (Sn)n has a cut-off property for ϕ if there
exists a cut-off bound n ∈N, such that

∀k > n,Sk �ϕ⇔Sn �ϕ

Namely, one of the two situations can happen:
∀n≥ k Sn �ϕ: Positive cut-off;

Cut-off property

Definition
A parameterised system (Sn)n has a cut-off property for ϕ if there
exists a cut-off bound n ∈N, such that

∀k > n,Sk �ϕ⇔Sn �ϕ

Namely, one of the two situations can happen:
∀n≥ k Sn �ϕ: Positive cut-off;

n
✗

1
✓

2
✗

3
✓

11
✓

12
✓

13
✓

14

Cut-off property

Definition
A parameterised system (Sn)n has a cut-off property for ϕ if there
exists a cut-off bound n ∈N, such that

∀k > n,Sk �ϕ⇔Sn �ϕ

Namely, one of the two situations can happen:
∀n≥ k Sn �ϕ: Positive cut-off;

n
✗

1
✓

2
✗

3
✓

11
✓

12
✓

13
✓

14

∀n≥ k Sn ��ϕ: Negative cut-off;

Cut-off property

Definition
A parameterised system (Sn)n has a cut-off property for ϕ if there
exists a cut-off bound n ∈N, such that

∀k > n,Sk �ϕ⇔Sn �ϕ

Namely, one of the two situations can happen:
∀n≥ k Sn �ϕ: Positive cut-off;

n
✗

1
✓

2
✗

3
✓

11
✓

12
✓

13
✓

14

∀n≥ k Sn ��ϕ: Negative cut-off;

n
✓

1
✗

2
✗

3
✓

4
✗

15
✗

16
✗

17

Cut-off point for coverability Safety in Petri Net

Cut-off point for coverability Safety in Petri Net:
general procedure

Cut-off point for coverability Safety in Petri Net:
general procedure

Problem: Given a Petri N , with a set of upward-closed initial
marking I = ↑p0 and an upward closed set Bad . Is there a
marking M ∈ I that can reach Bad?

Cut-off point for coverability Safety in Petri Net:
general procedure

Problem: Given a Petri N , with a set of upward-closed initial
marking I = ↑p0 and an upward closed set Bad . Is there a
marking M ∈ I that can reach Bad?

Karp-Miller tree from M0 =ω ·p0.

Cut-off point for coverability Safety in Petri Net:
general procedure

Problem: Given a Petri N , with a set of upward-closed initial
marking I = ↑p0 and an upward closed set Bad . Is there a
marking M ∈ I that can reach Bad?

Karp-Miller tree from M0 =ω ·p0.
(Recall week 3): for any M , if there is M � in
KarpMillerTree(N) with M ≤M �, then N can cover M .

Cut-off point for coverability Safety in Petri Net:
general procedure

Problem: Given a Petri N , with a set of upward-closed initial
marking I = ↑p0 and an upward closed set Bad . Is there a
marking M ∈ I that can reach Bad?

Karp-Miller tree from M0 =ω ·p0.
(Recall week 3): for any M , if there is M � in
KarpMillerTree(N) with M ≤M �, then N can cover M .
Conclusion: the problem is EXPSPACE-complete.

Recall: Backward coverability

function BackCoverFormal(N ,p0,Bad ,≤N ,p0,Bad ,≤N ,p0,Bad ,≤)
U←BadU←BadU←Bad
U� ←�U� ←�U� ←�
while U �=U�U �=U�U �=U� do

U� ←UU� ←UU� ←U
U←U∪Pre(U)U←U∪Pre(U)U←U∪Pre(U)

return ∃k : k ·p0 ∈U∃k : k ·p0 ∈U∃k : k ·p0 ∈U

Non-atomic operations on shared variables

Inspired by:
Model checking parameterized asynchronous shared-memory
systems.
Antoine Durand-Gasselin, Javier Esparza, Pierre Ganty, Rupak
Majumdar, 2017
Reachability in Networks of Register Protocols under Stochastic
Schedulers
Patricia Bouyer, Nicolas Markey, Mickael Randour, Arnaud Sangnier,
Daniel Stan, 2016

The model

q0 q1 q2 qf
R(0)

W (1)

R(1)

W (2)

R(2)

W (2)

Register protocol with D = {0,1,2}.

Definition: register protocol
P = 〈Q ,D ,q0,d0,qf ,T 〉

〈Q ,q0,qf ,T 〉 is a finite state automaton;
D finite dataset for the shared register;
d0 an initial value;
T ⊆Q× {R ,W }×D×Q set of transitions, labelled by read and write
operations over D.

The model

q0 q1 q2 qf
R(0)

W (1)

R(1)

W (2)

R(2)

W (2)

The model

q0 q1 q2 qf
R(0)

W (1)

R(1)

W (2)

R(2)

W (2)

Network for two processes (self-loops omitted).

0 q0 q0

The model

q0 q1 q2 qf
R(0)

W (1)

R(1)

W (2)

R(2)

W (2)

Network for two processes (self-loops omitted).

0 q0 q0

0 q1 q0

0 q0 q1

The model

q0 q1 q2 qf
R(0)

W (1)

R(1)

W (2)

R(2)

W (2)

Network for two processes (self-loops omitted).

0 q0 q0

0 q1 q0

0 q0 q1

1 q1 q0

1 q0 q1

0 q1 q1

The model

q0 q1 q2 qf
R(0)

W (1)

R(1)

W (2)

R(2)

W (2)

Network for two processes (self-loops omitted).

0 q0 q0

0 q1 q0

0 q0 q1

1 q1 q0

1 q0 q1

0 q1 q1

There exist paths from there, the processes in q0 are trapped;

The model

q0 q1 q2 qf
R(0)

W (1)

R(1)

W (2)

R(2)

W (2)

Network for two processes (self-loops omitted).

0 q0 q0

0 q1 q0

0 q0 q1

1 q1 q0

1 q0 q1

0 q1 q1 1 q1 q1

(Non-exhaustive construction)

There exist paths from there, the processes in q0 are trapped;

The model

q0 q1 q2 qf
R(0)

W (1)

R(1)

W (2)

R(2)

W (2)

Network for two processes (self-loops omitted).

0 q0 q0

0 q1 q0

0 q0 q1

1 q1 q0

1 q0 q1

0 q1 q1 1 q1 q1

1 q2 q1

1 q1 q2

(Non-exhaustive construction)

There exist paths from there, the processes in q0 are trapped;

The model

q0 q1 q2 qf
R(0)

W (1)

R(1)

W (2)

R(2)

W (2)

Network for two processes (self-loops omitted).

0 q0 q0

0 q1 q0

0 q0 q1

1 q1 q0

1 q0 q1

0 q1 q1 1 q1 q1

1 q2 q1

1 q1 q2

2 q1 q1

1 q2 q2

(Non-exhaustive construction)

There exist paths from there, the processes in q0 are trapped;

The model

q0 q1 q2 qf
R(0)

W (1)

R(1)

W (2)

R(2)

W (2)

Network for two processes (self-loops omitted).

0 q0 q0

0 q1 q0

0 q0 q1

1 q1 q0

1 q0 q1

0 q1 q1 1 q1 q1

1 q2 q1

1 q1 q2

2 q1 q1

1 q2 q2

(Non-exhaustive construction)

There exist paths from there, the processes in q0 are trapped;

The model

q0 q1 q2 qf
R(0)

W (1)

R(1)

W (2)

R(2)

W (2)

Network for two processes (self-loops omitted).

0 q0 q0

0 q1 q0

0 q0 q1

1 q1 q0

1 q0 q1

0 q1 q1 1 q1 q1

1 q2 q1

1 q1 q2

2 q1 q1

1 q2 q2 2 q1 q2

(Non-exhaustive construction)

There exist paths from there, the processes in q0 are trapped;

The model

q0 q1 q2 qf
R(0)

W (1)

R(1)

W (2)

R(2)

W (2)

Network for two processes (self-loops omitted).

0 q0 q0

0 q1 q0

0 q0 q1

1 q1 q0

1 q0 q1

0 q1 q1 1 q1 q1

1 q2 q1

1 q1 q2

2 q1 q1

1 q2 q2 2 q1 q2

2 q1 qf

(Non-exhaustive construction)

There exist paths from there, the processes in q0 are trapped;
There exist paths that reach qf . . .
. . . and they require at least two processes.

A configuration s ∈ S is a multiset of states + a register value

d ∈D;
0 q0 q1 q1 q2

A configuration s ∈ S is a multiset of states + a register value

d ∈D;
0 q0 q1 q1 q2

Parameter: once the system is started, the configuration has a
fixed size;
Interleaving semantics;
Non-atomic operations (read or write at a time);
Goal: reach a configuration which covers qf .

A configuration s ∈ S is a multiset of states + a register value

d ∈D;
0 q0 q1 q1 q2

Parameter: once the system is started, the configuration has a
fixed size;
Interleaving semantics;
Non-atomic operations (read or write at a time);
Goal: reach a configuration which covers qf .
Semantics:

A configuration s ∈ S is a multiset of states + a register value

d ∈D;
0 q0 q1 q1 q2

Parameter: once the system is started, the configuration has a
fixed size;
Interleaving semantics;
Non-atomic operations (read or write at a time);
Goal: reach a configuration which covers qf .
Semantics:

How does the scheduler work ?

Non-deterministic Scheduler Case:
Reachability/Safety

The scheduler is helpful;
Monotonicity: if qf is reachable with n initial processes, it is with
n+1;

n

Non-deterministic Scheduler Case:
Reachability/Safety

The scheduler is helpful;
Monotonicity: if qf is reachable with n initial processes, it is with
n+1;

n
✓

4

Non-deterministic Scheduler Case:
Reachability/Safety

The scheduler is helpful;
Monotonicity: if qf is reachable with n initial processes, it is with
n+1;

n
✓

4
✓

5

Non-deterministic Scheduler Case:
Reachability/Safety

The scheduler is helpful;
Monotonicity: if qf is reachable with n initial processes, it is with
n+1;

n
✓

4
✓

5
✓

6
✓

7
✓

8

Non-deterministic Scheduler Case:
Reachability/Safety

The scheduler is helpful;
Monotonicity: if qf is reachable with n initial processes, it is with
n+1;

n
✓

4
✓

5
✓

6
✓

7
✓

8
✗

1
✗

2
✗

3

Non-deterministic Scheduler Case:
Reachability/Safety

The scheduler is helpful;
Monotonicity: if qf is reachable with n initial processes, it is with
n+1;
. . . and there exists a witness of polynomial size.

n
✓

4
✓

5
✓

6
✓

7
✓

8
✗

1
✗

2
✗

3

Theorem (EGM13)
Given a protocol, if any, there exists a polynomial path that covers qf .

Non-deterministic Scheduler Case:
Reachability/Safety

The scheduler is helpful;
Monotonicity: if qf is reachable with n initial processes, it is with
n+1;
. . . and there exists a witness of polynomial size.

n
✓

4
✓

5
✓

6
✓

7
✓

8
✗

1
✗

2
✗

3

Theorem (EGM13)
Given a protocol, if any, there exists a polynomial path that covers qf .
Proof: check last appearance and dis-appearance of each control state...

Non-deterministic Scheduler Case:
Reachability/Safety

The scheduler is helpful;
Monotonicity: if qf is reachable with n initial processes, it is with
n+1;
. . . and there exists a witness of polynomial size.

n
✓

4
✓

5
✓

6
✓

7
✓

8
✗

1
✗

2
✗

3

Theorem (EGM13)
Given a protocol, if any, there exists a polynomial path that covers qf .
Proof: check last appearance and dis-appearance of each control state...

Gives a bound on the runtime of the backward coverability algorithm.

Fair, Probabilistic scheduler

We don’t control the scheduler anymore;
Stochastic behaviour (environment);
Finite patterns cannot be repeated infinetely often;

We consider almost-sure reachability: Pn(� ↑ qf) ?= 1

Fair, Probabilistic scheduler

We don’t control the scheduler anymore;
Stochastic behaviour (environment);
Finite patterns cannot be repeated infinetely often;

We consider almost-sure reachability: Pn(� ↑ qf) ?= 1

0 q0 q0

0 q1 q0

0 q0 q1

1 q1 q0

1 q0 q1

0 q1 q1 1 q1 q1

1 q2 q1

1 q1 q2

2 q1 q1

1 q2 q2 2 q1 q2

2 q1 qf

Fair, Probabilistic scheduler

We don’t control the scheduler anymore;
Stochastic behaviour (environment);
Finite patterns cannot be repeated infinetely often;

We consider almost-sure reachability: Pn(� ↑ qf) ?= 1

0 q0 q0

0 q1 q0

1/2

0 q0 q1

1/2

1 q1 q0

1/2

1 q0 q1

1/2

0 q1 q1

1/2

1/2

1 q1 q1

1/2

1/2

1 q2 q1

1/2

1 q1 q2

1/2

2 q1 q1

1 q2 q2

1/2

1/2
1/2

1/2

2 q1 q2

1/2

2 q1 qf

1/2

Fair, Probabilistic scheduler

We don’t control the scheduler anymore;
Stochastic behaviour (environment);
Finite patterns cannot be repeated infinetely often;

We consider almost-sure reachability: Pn(� ↑ qf) ?= 1

0 q0 q0

0 q1 q0

1/2

0 q0 q1

1/2

1 q1 q0

1/2

1 q0 q1

1/2

0 q1 q1

1/2

1/2

1 q1 q1

1/2

1/2

1 q2 q1

1/2

1 q1 q2

1/2

2 q1 q1

1 q2 q2

1/2

1/2
1/2

1/2

2 q1 q2

1/2

2 q1 qf

1/2

Qualitative property
+

Finite configuration space
=⇒ Exact probability values are

not relevant.

Lack of monotonicity

q0 q1

q4

q2 q3 qf
W (1) R(1) W (2) R(2)

R(2)

W (2)

W (3)

Lack of monotonicity

q0 q1

q4

q2 q3 qf
W (1) R(1) W (2) R(2)

R(2)

W (2)

W (3)

=⇒ Additional processes can create new deadlocks!

Lack of monotonicity

q0 q1

q4

q2 q3 qf
W (1) R(1) W (2) R(2)

R(2)

W (2)

W (3)

=⇒ Additional processes can create new deadlocks!

n
✓

1
✗

2
✗

3
✗

4
✗

5

Probabilistic Cut-off and WQO relation

We study the cut-off for the following ϕ property:

ϕ :=P(� ↑ qf)= 1

Probabilistic Cut-off and WQO relation

We study the cut-off for the following ϕ property:

ϕ :=P(� ↑ qf)= 1

Theorem (Admitted)

Pk(� ↑ qf)= 1

if, and only if,
Post∗(I ∩S=k)⊆Pre∗(↑qf)

Probabilistic Cut-off and WQO relation

We study the cut-off for the following ϕ property:

ϕ :=P(� ↑ qf)= 1

Theorem (Admitted)

Pk(� ↑ qf)= 1

if, and only if,
Post∗(I ∩S=k)⊆Pre∗(↑qf)

Proof (sketch):

Probabilistic Cut-off and WQO relation

We study the cut-off for the following ϕ property:

ϕ :=P(� ↑ qf)= 1

Theorem (Admitted)

Pk(� ↑ qf)= 1

if, and only if,
Post∗(I ∩S=k)⊆Pre∗(↑qf)

Proof (sketch): If Pk(� ↑ qf)= 1, then any reachable state s ∈ Sk is
reached with positive probability so should still reach ↑qf with probability
1, in particular s ∈Pre∗(↑qf). Let’s prove the reverse implication:
Assume Post∗(I ∩S=k)⊆Pre∗(↑qf), then:

For any reachable state s, there exists a path to reach ↑qf so the
probability for this to happen is some positive number f (s) > 0.

Probabilistic Cut-off and WQO relation

We study the cut-off for the following ϕ property:

ϕ :=P(� ↑ qf)= 1

Theorem (Admitted)

Pk(� ↑ qf)= 1

if, and only if,
Post∗(I ∩S=k)⊆Pre∗(↑qf)

Proof (sketch): If Pk(� ↑ qf)= 1, then any reachable state s ∈ Sk is
reached with positive probability so should still reach ↑qf with probability
1, in particular s ∈Pre∗(↑qf). Let’s prove the reverse implication:
Assume Post∗(I ∩S=k)⊆Pre∗(↑qf), then:

For any reachable state s, there exists a path to reach ↑qf so the
probability for this to happen is some positive number f (s) > 0.
At any time point, the probability of eventually reaching ↑qf is at
least maxs∈Sk f (s) which is positive since Sk is finite.

Examples

s0 s1 s2 . . . sn−1 snW (0)

R(0)

W (1)

R(1)

W (2)

R(2) R(n−2) R(n−1)

W (n−1)

“Filter” protocol Fn for n> 0.

Examples

s0 s1 s2 . . . sn−1 snW (0)

R(0)

W (1)

R(1)

W (2)

R(2) R(n−2) R(n−1)

W (n−1)

“Filter” protocol Fn for n> 0.

For protocol Fn,
� networks of size ≥ n cover sn with probability 1,
� networks of size < n cannot cover sn.

No deadlock can ever occur as all processes can always go back to the
initial state.

Examples

s0 s1 s2 . . . sn−1 snW (0)

R(0)

W (1)

R(1)

W (2)

R(2) R(n−2) R(n−1)

W (n−1)

“Filter” protocol Fn for n> 0.

For protocol Fn,
� networks of size ≥ n cover sn with probability 1,
� networks of size < n cannot cover sn.

No deadlock can ever occur as all processes can always go back to the
initial state.

=⇒ Tight positive cut-off equal to n, i.e., linear in the protocol
size.

Existence of a cut-off

Theorem
For any register protocol P there always exists a cut-off for
almost-sure reachability

Existence of a cut-off

Theorem
For any register protocol P there always exists a cut-off for
almost-sure reachability

� This result strongly relies on the fact that both (S ,�,→) and
(S ,�,→−1) are WSTS

Existence of a cut-off

Theorem
For any register protocol P there always exists a cut-off for
almost-sure reachability

� This result strongly relies on the fact that both (S ,�,→) and
(S ,�,→−1) are WSTS

The non-atomicity guarantees that when a process takes a transition, all
processes in the same state can also take the same transition (with a

non-zero probability).
=⇒ a.k.a. copycat lemma.

Existence: quick sketch (1/2)

Write Pre∗(↑qf)⊆ S the set of configurations that can reach qf ;
Write Post∗ (I ∩S≥n)⊆ S the set of reachable configurations of size
≥ n;

Existence: quick sketch (1/2)

Write Pre∗(↑qf)⊆ S the set of configurations that can reach qf ;
Write Post∗ (I ∩S≥n)⊆ S the set of reachable configurations of size
≥ n;

Positive cut-off:
∃n Post∗(I∩S≥n)⊆Pre∗(↑qf)

Negative cut-off:
∀n Post∗(I∩S=n) �⊆Pre∗(↑qf)

Existence: quick sketch (1/2)

Write Pre∗(↑qf)⊆ S the set of configurations that can reach qf ;
Write Post∗ (I ∩S≥n)⊆ S the set of reachable configurations of size
≥ n;

Positive cut-off:
∃n Post∗(I∩S≥n)⊆Pre∗(↑qf)

Negative cut-off:
∀n Post∗(I∩S=n) �⊆Pre∗(↑qf)

Consider � point-wise order over configurations, with state-value
support equality.

Existence: quick sketch (1/2)

Write Pre∗(↑qf)⊆ S the set of configurations that can reach qf ;
Write Post∗ (I ∩S≥n)⊆ S the set of reachable configurations of size
≥ n;

Positive cut-off:
∃n Post∗(I∩S≥n)⊆Pre∗(↑qf)

Negative cut-off:
∀n Post∗(I∩S=n) �⊆Pre∗(↑qf)

Consider � point-wise order over configurations, with state-value
support equality.

0 q0 q1 �� �1 q0 q1 1 q0 q1 q1 ��
1 q0 q1 q1 q2

Existence: quick sketch (1/2)

Write Pre∗(↑qf)⊆ S the set of configurations that can reach qf ;
Write Post∗ (I ∩S≥n)⊆ S the set of reachable configurations of size
≥ n;

Positive cut-off:
∃n Post∗(I∩S≥n)⊆Pre∗(↑qf)

Negative cut-off:
∀n Post∗(I∩S=n) �⊆Pre∗(↑qf)

Consider � point-wise order over configurations, with state-value
support equality.

0 q0 q1 �� �1 q0 q1 1 q0 q1 q1 ��
1 q0 q1 q1 q2

(S ,�) is a well-quasi-ordered set;
Pre∗ and Post∗(S≥n) are upward-closed for any n;

Existence: quick sketch (2/2)

1 Post∗(I ∩S≥1)=↑ {θ1, . . . ,θl } and Pre∗ =↑ �
η1, . . . ,ηm

�
.

Existence: quick sketch (2/2)

1 Post∗(I ∩S≥1)=↑ {θ1, . . . ,θl } and Pre∗ =↑ �
η1, . . . ,ηm

�
.

2 Is Post∗(I ∩S≥n) eventually included in Pre∗ ?
=⇒ A bit technical. . .

Existence: quick sketch (2/2)

1 Post∗(I ∩S≥1)=↑ {θ1, . . . ,θl } and Pre∗ =↑ �
η1, . . . ,ηm

�
.

2 Is Post∗(I ∩S≥n) eventually included in Pre∗ ?
=⇒ A bit technical. . . A more general results applies on

systems that are WSTS in both directions

Existence: quick sketch (2/2)

1 Post∗(I ∩S≥1)=↑ {θ1, . . . ,θl } and Pre∗ =↑ �
η1, . . . ,ηm

�
.

2 Is Post∗(I ∩S≥n) eventually included in Pre∗ ?
=⇒ A bit technical. . . A more general results applies on

systems that are WSTS in both directions

q2

q1

θ1

η1

η2

. . . intuitively, the goal is to check if
elements of Post∗(I ∩S≥n) can enter
Pre∗ by adding sufficiently many
processes in a given state.

Lemma 1. Let (S, I ,¹, |.|) a parameterised system such that

1. (S,¹,→−1) is a WSTS;

2. For any s, s′ ∈ S with s ¹ s′ and for any k ∈ [|s|, |s′], there exists t of size k such
that s ¹ t ¹ s′.

Then for any upward closed set U , there exists N such that, either

∀k ≥ N ,Post∗(I ∩S=k) ⊆U

either,
∀k ≥ N ,Post∗(I ∩S=k) 6⊆U

Proof. Let K = {k | Post∗(I ∩S=k) 6⊆U }.

• If K is finite, take N = 1+maxK . Then ∀k ≥ N ,Post∗(I ∩S=k) ⊆U .

• If K is infinite, for any k ∈ K , let ik ∈ I ∩S=k and sk ∈ Post∗(ik)\U . Since (S,¹)
is a WQO, we can extract an infinite subset K ′ ⊂ K such that for all k1,k2 ∈ K ′
with k1 ≤ k2, ik1 ¹ ik2 but also (by extracting another subsequence), xk1 ¹ xk2 .
We take n = minK , for any k ≥ N , since K ′ is infinite, there exists k ′ ∈ K ′ such
that n ≤ k ≤ k ′. Since xn ¹ xk ′ there exists xk such that xn ¹ xk ¹ xk ′ with
|xk | = k. Since in →∗ xn ¹ xk and (S,¹,→−1) is a WQO, there exists ik such
that in ¹ ik →∗ xk hence xk ∈ Post∗(I ∩S=k). Moreover, U is downward closed
so xk 6∈U .

1

