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Abstract

We present an expressive, concise, and extendable domain
specific language for planning of assembly systems, such
as industrial human robot cooperation. Increased flexibil-
ity requirements in manufacturing processes call for more
automation at the description and planning stages of man-
ufacturing. Procedural models are good candidates to meet
this demand as programs offer a high degree of flexibility
and are easily composed.

Furthermore, we aim to make our programs close to declar-
ative specification and integrate automatic reasoning tools
to help the users. The constraints come both from specific
programs and preexisting knowledge base from the target do-
main. The case of human robot collaboration is interesting as
there is a number of constraints and regulations around this
domain. Unfortunately, automated reasoners are often too
unpredictable and cannot be used directly by non-experts.

In this paper, we present our domain specific language
“Tool Ontology and Optimization Language” (TooL) and de-
scribe how we integrated automated reasoners and planners
in a way that makes them accessible to users which have
little programming knowledge, but expertise in manufactur-
ing domain and no previous experience with or knowledge
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about the underlying reasoners. We present encouraging re-
sults by applying TooL to a case study from the automotive
and aerospace industry.
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1 Introduction

Software used to be limited to purely logical tasks but it
has become pervasive and now controls many aspects of
the systems around us. With the increasing speed at which
cyber-physical systems get deployed, software interacts with
the real world in a more and more autonomous way.

The waterfall development model for software was adapted
from the more established engineering fields including the
manufacturing industry [Benington 1983], but it didn’t match
the reality of most software projects. Therefore, iterative and
incremental development processes are now the de facto
standard in software development. Increasing digitization,
automation, and competitive pressure to reduce the time
to market makes the manufacturing sector move toward to
iterative and decentralized processes. This is part of a larger
trend referred to as “Industry 4.0” [McKinsey & Company
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2015]. The challenges arising there are very similar to chal-
lenges of software development.

In this paper, we look at some of the decision making
in human robot collaboration (HRC) in the context of task
assignment for assembly planning. This leads to challeng-
ing questions regarding the choice of the best system setup
for the lifecycle sequence of the product and commission-
ing related aspects like the safety of humans when working
in cooperation with automated systems. Processes that are
dangerous for humans (when a robot welds, for instance)
should exclude humans. There are also tasks that particular
robots cannot execute due to their limitations. Our final goal
is to deliver a correct-by-construction approach to HRC in
assembly planning. Instead of relying on humans to know
all the regulations and not making any mistake, we rely on
automated reasoning tools integrated in a domain specific
language (DSL) to make the critical decisions. We present our
first steps in that direction. While the idea of using ontolo-
gies for assembly planning knowledge isn’t new (see [Raza
and Harrison 2011], for instance), we realized quickly that
current formal languages are hardly usable for non computer
scientists. Developing a DSL became an important step to
make the underlying formal model more understandable and
usable.

We have developed the Tool Ontology and Optimization
Language (TooL). The goal of TooL is to provide a light-
weight interface which helps non-experts to effectively use
automated reasoning and planning tools. In a sense, TooL
is a restriction over existing software, as it only exposes
tractable features and emulates some more advanced fea-
tures by paraphrasing them with simpler ones when possi-
ble. The programmer using Toot first formalizes products,
processes and resources in TooL’s DSL. Then, TooL checks
that suitable resources are provided to perform all processes
using an automated reasoner. Finally, the resources selected
by the reasoner are ordered into a schedule. The schedule is
optimized according to a linear combination of four objective
functions: cost, duration, probability of stable processes, and
quality of work. The optimization includes time and cost
for scheduled tooling of workers when necessary. While the
final stage of TooL is a planning problem that subsumes all
the steps which come before, we still decide to decompose
the problem in smaller chunks and solve them separately.
The overall complexity remains the same but, from a prac-
tical perspective, it makes the toolchain more predictable
and usable. Therefore, the classification stage at which an
automated reasoner picks the resources which can be used
during the scheduling is critical. This part processes the
largest amount of information and the input elements come
directly from the user with little filtering.

Automated reasoners have become staple tools when rea-
soning about properties of programs and, more widely, any
kind of system which has a precise mathematical model.
While these tools can give impressive results in the hand of
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experts, they can be unpredictable for people not familiar
with their underlying working principles. For instance, the
common understanding of worst case computational com-
plexity is not helpful for algorithms based on proof search.
Sometimes, having more constraints, i.e. a larger instance,
makes the solver faster (and sometimes not ...). This has led
to a renewed interest for more predictable systems based on
tractable logics. For instance, the Ivy systems [Padon et al.
2016] uses “only” the Bernays-Schonfinkel class, also known
as EPR, which is NEXPTIME-complete [Lewis 1980]. In this
work, we aim for even more tractable logics. The downside
of using simple logics is that encoding a problem can become
less intuitive as some constraints need to be reduced to more
restricted classes.

Instead of using SMT solvers which are pervasive in the
programming language and verification community, knowl-
edge representation in TooL is based on OwL 2 [Motik et al.
2012] and the associated reasoners. This choice is motivated
by the fact that OwL has been chosen by standardization
authorities [IEEE 2015; Schlenoff et al. 2012] to provide a for-
mal basis of robotics. We use the OwL ecosystem to benefit
from these efforts.

TooL is being tested on examples of assembly processes
from the aerospace and automotive industries at Zentrum fiir
Mechatronik und Automatisierungstechnik gemeinniitzige
GmbH (ZeMA) within a project aiming to develop more
efficient cyber-physical production technologies.

1.1 A (De)Motivating Example

Among this push for formalization and automation of the
assembly processes, a key component of our approach are
automated reasoners which transform a declarative specifi-
cation of the problem into a workable solution that meets
the specification. The goal of the following experiment was
to assess how usable automated reasoners are out-of-the-box
for non-experts.

We asked a fellow at ZeMA to formulate a small prod-
uct structure in the Web Ontology Language (OwL 2) with
the help of the Protégé editor [Knublauch et al. 2005]. That
person had some programming experience, but is not a com-
puter science professional. The given task was modeling the
component hierarchy of an aircraft fuselage with 1 skinner,
4 formers, 5 stringers and 16 clips. It is a small subset of the
case study that we will present in Section 4. No assembly pro-
cesses, workers or skills were to be modeled. He was neither
briefed nor restricted in any other way how he should design
the ontology. He searched the internet for examples to get an
intuition how to deal with OwL 2. The knowledge base that
he then designed is an interesting example of tractability
problems that arise when users are not aware of the com-
putational expensiveness of some operators and constraints.
The result was expressed in a logic that is decidable but
quite powerful, the description logic SROJT Q [Horrocks
et al. 2006] which is N2ExpTIME complete [Kazakov 2008].
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What made the example so complicated is the use of car-
dinality constraints and function inverses. Unsurprisingly,
checking if the ontology is consistent with the HERMIT rea-
soner [Glimm et al. 2010] aborted inconclusively after a
timeout of 120 minutes. With the help of TooL the same
person was able to encode the same example and the same
reasoner was able to perform the classification in less than a
second.

1.2 Contributions

We developed Tool as a lightweight DSL targeted at assem-
bly planning for human-robot collaboration in the manufac-
turing sector. TooL’s goal is to make off-the-shelf automated
reasoners accessible to non-expert users, only requiring some
programming background. Using off-the-shelf tools makes
our approach simple to implement and, therefore, easy to
adapt to other domains. A key challenge to face is the un-
predictable nature of automated reasoners. Therefore, we
designed the DSL to be a small layer around a tractable de-
scription logic. We present early results for the application
of TooL to examples from the aerospace and automotive
industries.

2 Preliminaries

Background on HRC for manufacturing. Due to the in-
creasingly available sensitive robots, which fulfill the criteria
and requirements for a secure cooperation with humans, pre-
viously not automatable tasks can be handed over to robots.
We target the assembly part of manufacturing because it
still has a high proportion of manual activities compared to
other areas of production, particularly for large component
assembly. We are not looking at the operational part (as it is
the domain of operators), but at the planning stage, where
discrete decisions regarding the operations are made.

Planning roughly goes along the following steps. First,
the data required for planning are collected, the tasks are
specified, and the assembly system is basically planned. The
plan is detailed and worked out in a refinement phase. The
planning concludes with the deployment and evaluation.

Assembly planning for large components such as airplane
parts takes days, even weeks when done manually. In the
rarest cases, planning starts from scratch. With shorter prod-
uct life-cycles, the uncertainties of the global economy, and
the dependencies of supplier networks, the number of nec-
essary planning adjustments is steadily increasing. Further-
more, numerous regulations involved with HRC make this
problem hard to manage for humans.

Description Logics (DL). DL are a family of formal log-
ics, which correspond to decidable fragments of First Order
Logic with set theory. An ontology, also called knowledge
base, is a set of axioms in a DL. Common to all DL is that
predicates are at most of arity two and only special forms of
quantification may occur. Predicate symbols of arity zero are
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called nominals or individuals, those of arity one are called
concepts and those of arity two are called roles. Nominals are
interpreted as elements of a nonempty universe !, concepts
as subsets of U and roles as subsets of 1l X . Let I denote the
function that interprets DL predicate symbols over Ul and let
X1 be shorthand for I1(X).

Concepts can either be named or they are concept expres-
sions, which are composed of at least one named concept
and one or more of the following constructors: concept union
((Au B); = A; U By), intersection (A1 B); = A; N By) and
complement ((—A)r = —(Ar)).

Quantification can only be used via constructors that take
arole and a concept as arguments and return a concept. It
is therefore called role restriction. The existential restriction
3R.B, where B denotes a concept and R a role, is defined as
a € (3R.B); & 3b € B;.(a,b) € Ry, and the value restriction
VR.Basa € (VR.B)[ o Vb e B[.(a, b) € Ry = be By

Local reflexivity (3R.self) construct concept from roles by
returning the concept which contains all individuals that
are related to themselves via the role ,i.e., a € (3R.self); &
(a, a) € Ry.

All DL allow to state axioms about inclusions (A C B)
and equivalences of concepts (A = B) Their semantics is
AC B & A C Biand A = B & A; = By. To preserve
tractability, concept inclusion is often restricted. Inclusion is
also applicable to roles with role inclusion of the form RC S
with semantics RC S & R; C Sy, and role chain inclusion
(RCI) of the form Ry o ... o Ry £ S with k > 1 where Ro R’
denotes the composition of binary relations.

Some DL also offer a bottom concept L with semantics
1; = 0 and a top concept T with T = . Disjoint concepts
A, B can be expressed as Ar1B = L. DL may also offer concrete
datatypes through roles R whose interpretation involves an a
priori defined set D, e.g. © = Q, and obeys the condition that
Ry € U X D. Such roles are commonly called data-properties.

Very few DL allow concept cross product inclusion (XPI)
axioms AX B E Ror R C AX B, where A, B are concepts and
Ris arole. The concept cross product semantics is (AX B); =
Ag X By. Cross product inclusions can be simulated if a DL is
capable of RCI, local reflexivity and a top role T X T.

An interpretation I is called valid for an ontology %K if it
respects the given inductive equations for interpretations.
Important reasoning tasks are concept satisfiability (given
K and a concept C, find I s.t. C; is nonempty), concept sub-
sumption (given K and concepts B, C, does B C C hold for
every valid I) and classification (given K return the graph
of all concept subsumptions B E C).

Polynomial DL Fragments. The DL fragment which we
employed is called SROEL(D). It supports nominals, 3
restrictions, L, T,T1, -, local reflexivity, GCI, RCL range re-
striction axioms and some concrete datatypes. It is PTIME
tractable if all RCI Ry o ... o R E S obey the context condi-
tion that ran(R) E ... E ran(S) is asserted directly or by an
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chain of concept inclusions [Krétzsch 2011]. SROE L(D) is
an extension of &L ++ [Baader et al. 2008] with local reflex-
ivity. The suffix "9’ indicates the support for the concrete
datatypes of &L ++ [Baader et al. 2005a,b]. The Owt EL stan-
dard is based on SROE L and E L ++, but less powerful with
respect to concrete datatypes.

The rational numbers are presented through data-properties
R with Ry € UxQ. The logic becomes more expressive when
these data-properties can be restricted to intervals of Q. Let
AR.J denote the restriction to Interval J] C Q with seman-
ticsa € (AR.]); © 3b € J.(a,b) € R;. If F; is a function,
then (3F.J); is the preimage of J. In the following, all data-
properties are interpreted as functions and 3R.] is therefore
called a rational function restriction.

Let F(C) = J be shortfor C = 3F.J, F(C) C Jfor CC 3F.]
and let F(C) = q denote 3F.{q} = C for ¢ € Q. OwL EL only
offers the restrictions F(C) = Q and F(C) = g whereas E L ++
also offers F(C) = (-0, q) which is written as F(C) < q. A
range restriction of F to an interval [g, o) can be expressed
by the axiom 3F.(—c0, q) C L, an additional axiom 3F.{q} C
L restricts the range to (g, o). OwWL 2 DL provides restrictions
to arbitrary intervals of Q, but the combination of F(C) <
q and F(C) > q restrictions with &L ++ makes reasoning
ExpTIME complete [Baader et al. 2005b]. In Section 3.1.3 we
give a weaker semantics to keep the reasoning tractable.

Although OwL 2 has an extension with linear equations
[Parsia and Sattler 2012]. Unfortunately, it is not supported
by any of the reasoners we tried and, therefore, we cannot
rely on it.

3 Toovr DSL

The core of TooL is a domain specific language (DSL) that
exposes a PTIME tractable fragment of Owt and uses a PDDL
reasoner for the scheduling of assembly processes. An user of
TooL goes through description, classification, and planning:

1. The programmer encodes the problem in the DSL. The
DSL is a declarative language in which the program-
mer describes elements, their types, and how they are
connected.

2. Then Toou classifies the problem. Workers, Actions,
Skills and Assembly Items are translated into an OwL
ontology, which is classified by the HErmIT reasoner
[Glimm et al. 2010]. In this step, all the constraints are
checked and the reasoner tries to find a model which
connects the skills of available resources to skills re-
quired by actions that need to be taken. This step may
already fail if there are not enough resources, or if some
action requires incompatible resources, e.g. a welding
robot along an unprotected human worker. When clas-
sification fails, TooL returns a set of unresolved skills.
If the classification succeeds, the resulting model can
go to planning.
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3. Dependence constraints and cost functions are speci-
fied at the planning stage. They, and knowledge from
the classified ontology, are translated into PDDL and
fed into the LPG-TD reasoner [Gerevini et al. 2004].

As we will see, the DSL is a thin layer above ontologies
and DL. Rather than using abstract DL operators, we reframe
them into the corresponding concepts from the target appli-
cation domain. Also, and more importantly, we only expose
tractable constraints. TooL can additionally import existing
ontologies, which makes it possible to import knowledge
which is not specific to the current instance, e.g., the workers,
robots, and tools available.

In the rest of this section, we explain the trade-offs we had
to do to preserve tractability. Rather than explaining every
operator in the language, we explain how the different kinds
of operations in the language are encoded into DL. While
the terminology is specific to our application domain, the
fact that the DSL is a relatively thin layer above the ontology
means a similar approach can be applied to other domains.

High-level structure and usage. An simplified abstract
syntax of the DSL is shown in Figure 1. We assume that the
DSL is embedded in an general purpose programming lan-
guage and describes the Toor specific elements. The host lan-
guage provides the control structure, e.g., branch, loop and
procedure, and type system. The DSL is articulated among
the following elements:

Workers are Humans and Robots that may have Tools,
they contribute Skills.

Assembly Items are the Components, organized in As-
sembly Groups, to assemble.

Skills are capabilities offered by workers and their tools
to accomplish some Actions.

Actions are the Operations, grouped in a Process hierar-
chy, to schedule.

Assessments give cost, duration, probability of success,
and quality to tasks and workers

Schedules assign operations to workers, start and end
times for operations, and tool changes.

Example 3.1. Below is a TooL formulation of a small exam-
ple showing the DSL as currently implemented as a Kotrin
library. To hide the implementation details assembly items,
actions, skills, workers, tools, etc., are created using planning
factory:

val factory = PlanningFactory(
"urn:absolute:tool/AircraftFuselage")

val bonding = factory.skill("bonding")

val shredding = factory.skill("shredding")

val gluing = factory.skill( "gluing",
setOf (bonding),
setOf (shredding))

val clip = factory.component("clip")
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PlanningFunction(name, unit, domain = name, range = interval)

cost € Q, duration € Q, capability € {0, ..., 10}, quality € {0,..., 10}

name := a string identifier
unit := unit of measurement, e.g., meter
interval := closed, half-open, or open interval of Q
function ::=
constraint == (containedIn | disjointFrom) skill
skill :== Skill(name, constraint™)
| function interval constraint”
position ::=  AssemblyPosition(name, skill, pre = skill?, post = skill?)
assemblyltem ::= Component(name, weight € interval)
| AssemblyGroup(name, (position assemblyltem)*)
actionMatching := MultipleProcess(assemblyltem+, action+)
action := Operation(name, skill*, assemblyltem”)
| Process(name, action®, assemblyltem”)
| Process(name, actionMatching, (position action)™)
tool ::= Tool(name, skill*)
worker == Human(name, skill*, tool")
| Robot(name, skill", tool")
skillMatching ::= Classification(action+, worker+, ImportedOntology(name)*)
actionCondition ::= DependsOn(action, action)
objective :=
assessment == Assessment(objective, action, worker?, tool?)
| ActionCostPerHour((worker | tool) value € Q)
schedule ::=

Plan(skillMatching, actionCondition*, assessment”, objective)

Onward! ’18, November 7-8, 2018, Boston, MA, USA

Figure 1. TooL abstract syntax (simplified)

val gluing_clip = factory.operation(
"gluing of a clip",
setOf(clip),
listOf(gluing))
val assembleClips = factory.process(
"assemble clips",
setOf (
gluing_clip totalCopies 16))
val robot1 = factory.robot(
"robot1",
1listOf(gluing))

Rather general skills ‘bonding’ and ‘shredding’ are defined,
followed by the skill ‘gluing’, which is a sub-skill of bonding.
In the ontology, sub-skills are expressed through concept
inclusions. A parameter containedInAny can be provided
while creating a new skill, which is telling that the OwL
concept representing the skill will be included in any of
the concept-expressions from containedInAny. It can also be
stressed that gluing is not a type of shredding, by telling that
it is disjoint with any shredding.

A component is created (potential parameters such as
temperature are left out). An operation gluing of a clip is
defined and linked to the clip, which it "treats" (this can be
handy if the operation needs data such as the temperature
of the component). The following definition of the process
assemble clips gets 16 copies of the gluing_clip operation.
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At last, a robot without tools is defined, and the only skill it
provides is gluing.

3.1 From the DSL to Constraints

The result of a TooL program is a schedule. However, com-
puting the schedule is computationally hard. Therefore, most
of the effort of TooL is to structure the problem description
such that we can split the problem in two parts. The skill
matching phase pre-process the problem and only keeps the
relevant elements. Then a smaller planning problem is gener-
ated using the skill matching informations. In this subsection,
we focus on how the skill matching is performed (element
of Figure 1 up to skillMatching). We discuss how the main
elements of the DSL map to DL constraints focusing on the
element where we had to adopt unexpected encodings to
preserve tractability.

3.1.1 Hierarchy and Relations

Objects created in TooL extend a category or an existing
element from a category. This hierarchy is used to share
some constraints and specialize other. For instance, human
workers and robot workers are similar. The presence of two
separate classes follows from the need of having different
axioms applied to them.

In the example above, “factory.skill("bonding")” in-
troduces a new bonding concept. The factory methods also
provide access to operators for constraints between concepts.
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The more complicated “factory.skill( "gluing",
setOf (bonding),
setOf (shredding))” creates a gluing concept and adds

the following two constraints between concepts:
gluing C bonding
gluing M shredding = L

Next, each top level class comes with specific attributes
and relation to other classes. For instance, workers have
skills, and a property indicating all tool-types that a worker
is able to use. The maximum weight that a worker is capable
of handling is also a skill. When a worker uses a tool, he gets
the tool’s skills on top of his own skills.

From the attributes and relations, we produce OwL con-
straints and axioms. Binary relations are directly supported
by Owt EL and we can directly translate such constraints. For
instance, TooL generates relation between skills and work-
ers (canBeHandledByWorker) or between skills and tools
(canBeHandledByTool) and gives them to the reasoner.

The range of canBeHandledByWorker are all workers; its
domain JdcanBeHandledByWorker.T is defined as the con-
cept of all skills that can be handled by any worker. The
generated ontology gets one XPI axiom skillOf_W X W C
canBeHandledByWorker for each worker W to model the
overall skills skil10f_W that the worker possesses. An or-
dinary concept inclusion s £ skillOf_W is added to the
ontology for any skill s that W possesses. In the example the
generated axioms are:

skillOf_robot1 X robot1 C canBeHandledByWorker
gluing C skillOf_robot1

Unfortunately, XPI axioms are not directly supported in
OwtL. Instead, we simulate an inclusion SXW E R by turning
the concept into roles (rolification) and then using role inclu-
sion. The rolification uses two fresh names Rg, Ry which get
constrained by the axioms JRg.self = S and IRy, .self = W
and their domain and range are restricted to S or W respec-
tively. Then the inclusion becomes Rg o (T X T) o Ryy C R.

3.1.2 Numerical Constraints and Relaxed Semantics

Numerical constraints over rational numbers are tractable on
their own. However, we need to be careful when combining
them with other axioms as the unrestricted combination of
constraints has a much greater expressive power. Numerical
reasoning appears, for instance, with ranges that describe
the weights of components to assemble or the reach of tools.
Cardinality constraints occur when specifying the number
of elements or resources like gluing_clip in the example
above.

Cardinality constraints. In the example 3.1, TooLr does not
encode the number of clips as cardinality constraints. Exact
cardinalities larger than 1 cannot be specified in OwL EL++.
On the other hand, it is possible to have lower bounds. Such
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lower bounds are asserted by creating enough individuals.
Instead of the exact constraints, TooL asserts that there are
as many different components of the given type as it was
specified, but leaves open if there are more. For our target
domain, this relaxation is harmless and keeps the problem
tractable.

Rational function restrictions. TooL’s knowledge base is
OwL 2 which allows data-properties F to have the rational
numbers as image, and it’s possible to use any rational inter-
val J € Q in a restriction 3F.J. ToorL employs these OwWL 2
DL data-property-restrictions on rational numbers, as OwL
2’s PTIME tractable fragment OwL EL supports only the re-
strictions IF.Q and 3F.{q} for ¢ € Q. EL++ offers a less
then operator < which allows to express half open intervals
3F.[g, o0) and open intervals IF.(q, o) for any ¢ € Q. A
simple use case in TooL is given below. A rational function
is created through a planningFunction factory call, which
takes a name and a comment about its intended use as argu-
ments. In the second line a skill is created by restricting the

function to the closed rational interval [0, %].

val f_velocity = factory.planningFunction(

"velocity", "in m/s")
val s_velocity_0_10kmh = f_velocity.skill(
CL'e, '100/!'36]1)

To create a rational number, we overload the ‘!” operator to
use it as a conversion method from integer to TooL’s ratio-
nal number and square brackets can be redefined through
appropriate getters.

3.1.3 Weakened Interval Semantics

As shown in the code above, skills often range over intervals.
Furthermore, actions can require specific values for a skill
or, in some cases, also a range. Therefore, ontologies cre-
ated by TooL require reasoning about intervals. Toor’s DL
knowledge bases already includes rational function restric-
tions (3F.]J) to arbitrary closed, open and half-open intervals
over Q. But mixing intervals and rational functions with
the standard DL semantics makes it possible to express a
concept union C = A U B with the axioms C = 3F.[x, 2],
A = 3F.[x,y] and B = 3F.(y, z]. This results in a more pow-
erful DL where subsumption is ExpTiME hard [Baader et al.
2005b]. Since we want that reasoning over TooL ontologies
stays in PTIME, we need to weaken the semantics for ra-
tional interval restrictions. The weakened semantics can
be described as incomplete reasoning in & L ++(Q, §), where
& is the family of rational function restrictions 3F.]. The
only deductions which won’t be performed are those which
correspond to concept unions.

Some definitions are needed to show concept unions are
not deduced. Let Ip(Fy, . . ., F,) be the general notation for
a restriction of n-ary operators p on concrete datatypes, e.g.
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J+q(F, G) for the binary-operator restriction 3F + ¢ = G. A
concrete domain D is p-admissible if (1) satisfiability and
implication in D are decidable in polynomial time, and (2) D
is convex: if a conjunction of atoms of the form Ip(Fy, . .., F,)
implies a disjunction of such atoms, then it also implies one
of its disjuncts. Conjunction, disjunction and implies can be
read as the logical operators A, V, — and as the DL operators
M, U, C. Subsumption in &L ++ is PTIME tractable for any p-
admissible concrete domain [Baader et al. 2005a,b].

The standard semantics for interval restrictions is a €
(3R.))r & 3b € J.(a,b) € Ry and it is interpreted confor-
mant with concept unions LI, i.e. under the standard seman-
tics AF.[x,z] = IF.[x,y] U TF.(y,z] forx < y < z € Q.
Therefore, the concrete domain (Q, <4, >4) with restriction

schemes 3F.(—0, q] and 3F.(g, o) isn’t PTIME tractable.

For instance, consider 3F.(—co, 1] C JF.(—o0, 0]JLTF.(0, co0).

This constraint is true but breaks convexity. IF.(—co, 1] im-
plies the disjunction 3F.(—o0, 0] LI 3F.(0, 00). However, nei-
ther 3F.(—o0, 1] C 3F.(—00, 0] nor IF.(—o0, 1] C 3IF.(0, c0)
holds.

We can enforce convexity by requiring that no deduc-
tions incorporate non-trivial concept unions over restric-
tions, with 3p;(F;, G;), 3F;.J;, or 3F; + q; = G; and J; € Q,
qi € Q:

p1(F1, G1) E pa(F2, Go) Ups(F3,G3) &
p1(F1,G1) E pa(F2. G2) V pi(F1,Gr) E p3(F3, G3)

Then C = 3F.[x, z]AA = JF.[x,y]AB = 3F.(y, z] doesn’t im-
ply that C = ALIB. It may be counterintuitive that 3F.(—oo, 1]
isn’t recognized as a subconcept of 3F.(—o0, 0] LI IF.(0, o),
but this should not be too surprising in a language which
doesn’t offer an union operator LI.

The extension by local reflexivity 3R.self doesn’t affect
the PTIME tractability of EL++(Q,§), as local reflexivity
does not apply to concrete datatypes.

3.1.4 Concept Inclusion Lattice for Intervals

HermIT and almost all OwL reasoners do not support the
OwL datarange extension for linear equations, TooL there-
fore doesn’t employ arithmetic operators on rational func-
tion restrictions. All rational function restrictions can still
be encoded as concepts which respect the inclusion lattice
for rational intervals without using linear programming.

We observe that there are at most k(n) = 2n+4- (22" ) many
intersections of n given intervals. This follows from (a) in-
terval intersections are themselves intervals; (b) n intervals
have at most 2n distinct endpoints, so there is at most 2n
many singleton intervals; (c) there are four different proper
interval types, open, closed and half open left / right and
each resulting proper interval is described by one of the four
types and two of the given < 2n endpoints.

The classification of n given interval restrictions is done
by adding the at most k(n)? many subsumption and disjoint-
ness axioms to the original knowledge base. Therefore, the
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subsumption and classification stay PTIME tractable w.r.t. the
size of the original knowledge base.

3.2 Toor Implementation

We originally planned to deliver TooL as a stand-alone DSL
with its own syntax and toolchain. For practical use this
requires not just a plain lexer and parser, but rather inte-
gration into a rich IDE like Eclipse and support for features
like syntax highlighting, code folding, or navigation through
the code. We explored using XText [Efftinge 2008], Jetbrains
MPS [Dmitriev 2004] and Spoofax [Wachsmuth et al. 2014]
as ways to obtain such an IDE integration. However, the
time and effort required to develop a full-fledged DSL made
us reconsider and opt for a shallow embedding in a general
purpose language.

KotLIN embedding. The major reasons for the decision to
implement TooL in KoTLIN are that TooL needs to integrate
with the JVM in the context of the IProGro? project at ZeMA.
KoTLIN is in both directions fully interoperable with Java.
Furthermore, given that KoTLIN is supported by Google, it
was considered to be a viable option for long term develop-
ment. Embedding in a general purpose language means that
we can focus on the domain-specific elements and rely on
the host language for the control structure and type system.
KoTLIN is shorter and more concise than plain Java, allows a
limited form of operator overloading which is employed by
TooL. All the elements from the DSL are offered as KoTLINn
types to describe assembly planning problems. We use the
factory method design pattern to hide the implementation
details of the DSL objects. Each skill, worker and action ob-
ject contains a representation as OwL concept, and the plan-
ning factory also creates an ontology with all axioms that
are explicitly or implicitly imposed on these concepts. The
concepts that represent skills, workers and actions provide
methods to obtain concept intersections and to tell explicitly
inclusion, equivalence or disjointness relations. There are
also classes that represent OwL roles and data-properties,
which can be restricted to any of the concepts. The structure
of the DSL also creates constraints, e.g., skills and workers
are disjoint and robot is included in worker.

OwL reasoner and PDDL planner. We looked at the OwL
Reasoner Evaluation 2015 (ORE 2015) [Parsia et al. 2017]. In
addition to HERMIT [Glimm et al. 2010] which we initially
chose because it reliably provides good performances, we
considered the following reasoners. CEL [Baader et al. 2006],
ELEPHANT [Sertkaya 2013], FacT++ [Tsarkov and Horrocks
2006], and ELK [Kazakov et al. 2013] do not support the
operators we use. PELLET [Sirin et al. 2007] is slow on our
examples due to many cross products. KONCLUDE [Steigmiller
et al. 2014], unfortunately, does not support the OWL-API
directly.

Since the standardization of plan definition language PDDL
[Ghallab et al. 1998], many planners have been developed.
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Toov’s chosen axiomatization requires the features :adl, :flu-
ents and :typing and the support for durative actions. When
choosing the planner — as in the OwL reasoner case — our
priority was predictability over raw performance. This is re-
quired as our target users are not aware of the inner working
of the planner and we cannot expect them to restructure the
problem into forms that are easier to solve. The planner of
choice was LPG-TD [Gerevini et al. 2004]. In comparison to
other planners that we tried ([Benton et al. 2012; Edelkamp
and Jabbar 2008; Eyerich and Roger 2009; Helmert 2006; Hoff-
mann 2003; Vidal 2014]), LPG-TD stood out because of its
stability, high-quality error messages, and ease of use.

User interface and PLM integration. We plan to use TooL
in further projects within ZeMA and encourage its adoption
outside of ZeMA. However, a survey of assembly planners
among ZeMA'’s industrial partners has shown that code is
not widely accepted as planning support. Graphical user
interfaces (GUI) are the standard in the planning domain.
Therefore, we are in the process of building a GUI (MoPLATo)
on top of Toor which mimic the style of existing product
life-cycle management (PLM) systems. However, we already
observed the use of capabilities of programming languages
that would be hard to express in a GUIL For instance, some
precedence constraints were directly extracted from the com-
ponent structure by writing an auxiliary method that tra-
verses the assembly groups and generate action conditions
according to the component hierarchy.

In the first iteration, the plans encoded in the GUI will
correspond to straight-line programs. Later, we are consid-
ering including in the GUI blocks encode more complex
control flow in the style of visual programming languages
like Scratch [Marji 2014]. Hopefully, the GUI will have the
same capabilities as TooL and but in a form closer to what
planners are familiar with. Wider deployment of TooL and
MoPrAaTo inside ZeMA and industry partners that would
allow us to compare both is still future work. More informa-
tion on the GUI and the integration of Toot in the wider
industrial ecosystem can be found in [Miiller et al. 2018].

4 Case Studies: Assembly of Large and
Medium Size Components

We evaluate TooL on two case studies derived from research
projects at ZeMA, which focus on the assembly of an Airbus
A350 fuselage shell (large size) and the assembly of an un-
derbody panel in the end of line car assembly (medium size).
The difference in size implies different organization of the
assembly. The assembly of large components at Airbus is de-
signed as construction site assembly, whereas the assembly
of the car underbody plates takes place in flow operation.
The big advantage of the large component assembly—that
usually enough space is available to work with several actors
simultaneously on one component—is also a disadvantage,
because the accessibility is often difficult to guarantee. For
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the flow operation, the vehicle is transported in the assembly
section with the aid of a hanger attached to the hall ceiling.
As a result, the car hangs above the heads of the workers in
all process steps, which improves accessibility, but places par-
ticular strain on the cardiovascular system of workers. This
circumstance makes it necessary to consider use of robots to
help human workers. Toot is used in this context to analyze
the product, the required processes and the resources and to
evaluate a potential human-robot cooperation. In the follow-
ing paragraphs we give use those two examples to give an
overview of the planning process with TooL and present its
results.

Rough planning of assembly tasks with Toor takes place
in seven steps:

1. The product analysis, with the goal to transform the
product structure into TooLr. Here, all product and
process-related design specifications are considered
by the planner.

2. The first matching is performed by Toot, in which the
product structure is transferred to a process structure
with the aid of a process database and a comparison
with the design-required processes.

3. During the process analysis the planner applies his
knowledge and designs a suitable precedence graph.

4. The second matching is performed by Toor, which
searches for suitable resources that meet the process
requirements.

5. A suitability assessment of the proposed process re-
source allocation is performed by the planner. TooL
gathers the result.

6. A scheduling according to the specifications of the
assembly precedence graph is performed by TooL.

7. Optimization according to weighted target criteria in
terms of time, costs and process capability is performed
by Toor.

Subsequently, a geometric and ergonomic evaluation is rec-
ommended, which is currently not part of TooL'. Toor does
not take care of complex geometric and ergonomic validation.
An extension of Toor would be to connect existing software
that solve this task. Nevertheless, for some areas of planning,
such as the design of dynamic safety aspects, it is necessary
that the result of the rough planning is personally assessed
and supplemented by the planners. The technical changes
and expressions that result from this evaluation can then be
subsequently included in the model and evaluated iteratively.
The integration of those aspects is part of ongoing research.

The product to be planned in the context of large compo-
nent assembly is a fuselage shell element of section 13/14
of an Airbus A350 (Figure 2). The fuselage shell under con-
sideration is a quarter of the lower fuselage shell, which is

I There exist appropriate computer-aided tools which can simulate schedules
and validate the geometric constraints that doesn’t occur during the high-
level planning.



TooL: Accessible Automated Reasoning for HRC

connected directly behind the cockpit section. Its dimensions
comprise a length of 7 meters and a circumference of approx-
imatively 2.5 meters. Three product variants are taken into
account during planning which results in 18 assembly groups
when nine different component types and its variants to be
assembled. Stringer, clips, frames, brackets, tube connectors,
plate holders are designed to be glued together. The tube
should be threaded into the tube holder and the side plate
is screwed into the plate holder. In comparison, the car un-
derbody panel (Figure 3) is an approximately 2 square meter
thin panel with low rigidity. It protects the engine and elec-
tronics from the underside of the vehicle against moisture
and debris.

At the beginning of the planning process, the informa-
tion is gathered from the perspective of a product designer.
Nowadays many companies use PLM (product life-cycle man-
agement) systems from which these data are readily accessi-
ble. In some cases, a designer already specifies in detail, e.g.
which joining process is to be selected with which parame-
ters. However, detailed process design remains a task of the
process planner.

The product structures are mapped with the aid of Toot:
each component that finds its way into an assembly group
is assigned a location and a required process type in addi-
tion to product attributes. With this information, a process
planner can start designing the assembly processes. The pro-
cess structure derived from the product structure serves the
planner as a basis for this. TooL searches for suitable pro-
cesses according to the process requirements from a process
database and suggests them to the planner. The planner can
then modify or accept the proposed processes, and create
new processes or operations.

The sketch of the fuselage shell assembly looks like this:
(1) stringers and clips are glued to the shell, (2) adhesive is
then applied, the component is joined and fixed and the cur-
ing process is activated with the help of heat, (3) the frames
are then assembled using the same procedure, followed by
the add-on parts, (4) the brackets, tube connectors and plate
holders of the add-on parts are also glued. Once the attach-
ments are cured and free of defects after the inspection, the
tube can be inserted into the connectors and the side plate
screwed to the plate holders.

Creating a process or operation requires a description
of the skills required by an action for the skill matching
and dependencies for the scheduling. As the product struc-
ture follows a hierarchy (components, assembly groups), the
analysis of processes follows a similar structure (operations,
processes):

1. handling (feeding, transporting, fixing),

2. joining (adhesive bonding, fastening, pressing on),

3. auxiliary processes (monitoring of the adhesive bond-
ing, final inspection), and

4. special processes (priming).
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In the example of the assembly of the underbody plates,
the naked car is continuously conveyed through the station.
First, the c-clips (item 1.3 in Figure 3) and the expanding nuts
(1.4) must be fed and installed. Appropriate screw points are
provided for the nuts. Then the underbody plate (1.1) is
fed in and threaded into the flap in the front area. It has
screw feedthroughs that must afterwards be aligned with
the positions of the nuts. Hexagonal bolts (1.2) must then
be fed in and used to fix the underbody plate in the aligned
position. Now the remaining screws can be inserted and the
assembly must be checked visually. The output comprises of
the following:

1. handling (feeding, transporting, aligning, fixing),
2. joining (threading, fastening),
3. auxiliary processes (visual inspection).

This is followed by an analysis of the resources The hier-
archy starts here at the lowest level with resources, such as
actors and tools, which can be aggregated to system groups.
These in turn can be used to build system modules that can be
integrated into a station. With regard to the system groups,
the ZeMA relies on exchangeable modules. In both cases, the
planner describes these modules and their skills.

In the aircraft context, it is possible to integrate up to
three workers in a station. We model four robots which are
physically available at ZeMA. As the station can only con-
tain three workers, the planner must consider both quantity
and qualifications. The priming, adhesive application, joining,
and screwing processes have both manual and automated
tools. Fixing is a human worker’s skill. Only an automated
tool is available for thermographic inspection and curing. On
the other hand, transport requires a human. For underbody
assembly, a maximum of two people or one person and one
robot are permitted in the station. Appropriate workers were
added and the robots from the existing database were used.
An electric overhead conveyor was created for transport-
ing, as there is no alternative equipment here. For all of
the above processes, manual tools from different manufac-
turers with correspondingly different configurations have
been stored. An automated tool was created exclusively for
screwing, which can also feeds the screws at the same time.

After all the elements have been modeled, TooL creates
an ontology of the planning data and a reasoner is used to
evaluate the skill-matching. The task assignment takes place
on the lowest reasonable level. In most cases these are the
tasks of the operations. For instance, the assembly process
adhesive application contains six operations: fixing of the
base component, surface activation, application of adhesive,
joining, fixing of the applied component, and curing. Ex-
ploring the operation further, we find the tasks: attach tool,
move to target position, apply adhesive, move to next target
position or move to tool holder, and detach tool. Each task
has some properties. These can be the attributes of the task
itself or requested methods. Aggregated with component
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Figure 3. Car underbody panel assembly

properties, these task properties form the requirements. In
many cases, it makes sense to group the tasks and assign
them to one resource, e.g., if an actor lifts an object we can
reasonably assume it will transport it afterwards. In TooL
these activities (operations, processes) are flagged as atomic
processes. Taking all the possible options into account, the
automated reasoner is much faster than the manual effort of
a planner. Nevertheless, since ontologies handle only basic
geometric constraints and many safety-restrictions become
relevant within the overall context, a suitability assessment
is done by the planner. This assessment filters the infeasible
resource combinations. In this example all possible combi-
nations were feasible as well, so that the scheduling and
optimization was able to select from all entities.

Without the support of TooL, the planner would pick the
most complex product structure and plan a system manually,
taking the other variants into account based on personal ex-
perience. With Toot, the planner must assign process times
and, in a simplified form, costs to the permitted process re-
source combinations, after which the PDDL solver search a
schedule. In most cases time is not the exclusive optimization
target. Planners may have to meet cost, probability of stable
processes and work quality targets among others. Thus, the
assembly planning procedure becomes a multidimensional
problem. At this stage of development, TooL can optimize
time and cost on a cardinal scale and probability of stable
processes and work quality on an ordinal scale. Thus, the
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optimization has four targets to meet. The ordinal scales
must be translated into a cardinal one for optimization, and
the weights may be changed in order to observe their im-
pact. The PDDL-solver then searches for an assignment of
operations to resources which respects the precedence rela-
tions of processes, operations and tasks. It does automatically
schedule tool-up operations or strip-down operations when
a worker needs no use a different tool to perform an action.
The schedule is optimized according to a linear combination
of the four objective functions.

In Table 1, we present an evaluation of the effort and re-
sult of the case study. Concerning the user’s effort, the wide
majority of the work has been done by a planning expert
without prior experience in using automated reasoner. He
had to learn the basic of KoTLIN programming but did not
had any extra knowledge about the underlying reasoner and
planner. Most of the work was dedicated to studying the
example and formalizing it. The overall process of studying,
analyzing, and decomposing the planning problem can take
from days to weeks depending on the complexity of the ex-
ample. This effort is required whether TooL is used or not.
For our case study, the formalization in TooL took one day
for the underbody and two days for the fuselage. The reward
for this extra effort is that Toor then helps in finding a solu-
tion. For a new project, we estimate that about two third of
the development time is for the initial formalization and the
remaining 3rd dedicated to solving, adapting, and optimizing
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the model to get better results. For replanning, the formaliza-
tion effort will be drastically reduced. As we build libraries
of components, skills, and processes, we expect to improve
in that respect. The case study resulted in 169 lines of code
for the underbody (excluding comments) and 501 lines of
code for the fuselage. Most of this code is directly related to
the formalization of the example and there is around 40 lines
of boilerplate code to put everything together, handle the
solving, and store the solution. The underbody classification
problem had more that 700 axioms and 2500 for the fuselage.
HermIT was able to handle them in less than 20 minutes.
This stands in sharp contrast with our example from Sec-
tion 1.1. That example was a very small subset of this case
study. Then for the scheduling part, the scheduling problem
for the underbody had around 250 actions to choose from
and more than 5000 actions for the fuselage. The planner
was able to find a schedule in about 15 minutes.

5 Related Work

The idea that less is more has gained momentum in program-
ming languages and verification. The aim is to provide more
predictable tools at the cost of removing features. This ap-
proach was taken by Ivy [Padon et al. 2016], which is limited
to EPR, and Liguip HAsKELL [Vazou 2016], which only auto-
mates the reasoning for decidable, quantifier-free first-order
theories. TooL subscribes to similar philosophy. By restrict-
ing the expressiveness of the language, we gain predictability
and ease of use which more often than not is a crucial com-
ponent especially for non-expert users. A similar trend is
visible in different contexts of automation, aiming to achieve
successful end-user programming. [Alexandrova et al. 2015]
creates a flow-based language for programming general-
purpose robots. [Thomason et al. 2015] builds a natural-
language dialog system to communicate user’s intent to a
robot. Finally, [Finucane et al. 2010] shows how to make
existing formal languages more usable by using structured
English instead of temporal logic in robotics applications.

Planning is a classical problem in Al and robotics [Choset
et al. 2005; Russell and Norvig 2009]. The planning algo-
rithms and tools such as [Helmert 2006; Hoffmann and Nebel
2001] have already been used in the context of robotic and
multi-robot systems [Desai et al. 2017; Gavran et al. 2017; Lin
and Mitra 2015]. They start from declarative specification
and synthesize a detailed (multi) robot plan. While dealing
with multi-robot systems they — unlike TooL— only observe
identical robots, with equal capabilities. While a lot of work
has been done in (reactive) planning for temporal goals [De-
Castro et al. 2015; Kress-Gazit et al. 2009; Wongpiromsarn
et al. 2012], it is assumed that the assignment is provided
to the planning algorithm beforehand. Toor automates this
step but does not support reactive planning — it assumes a
controlled environment such as a factory.
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Planning of assembly systems is an active research field,
where a computer aid can be used in different stages of
the process thanks to the formalizations of planning knowl-
edge [Rudolf 2006; Weidner 2014]. The deployment of ever
more connected and reconfigurable production systems sig-
nificantly increases the complexity of the tasks given to
(human) workers in charge of planning. [Jonas 2000] demon-
strates how planning in assembly system can be aided by
computers. [Glawe et al. 2015] shows how AutomationML
[Schmidt and Liider 2015] can be connected to OWL reason-
ing in an application-independent fashion. The importance
of using knowledge bases in industry has been recognized
in recent years [Huang et al. 2015; Raza and Harrison 2011].
TooL, with its domain-specific language, enables engineers
to take the full advantage of it. Recently, it has be shown
how basic geometric information can be included into ontolo-
gies [Qiao et al. 2018]. We omit this part as TooL resides on a
higher level of abstraction, performing skill-based matching.
In the area of human-robot collaboration, [Beumelburg 2005]
focuses on determining whether a human or a robot would
be more suitable for an operation at hand. TooL considers
human-robot cooperation at the level of the whole assembly
rather than single operations. This property is crucial for
encoding safety requirements of the cooperation.

6 Conclusion

We developed TooL, a DSL targeted at assembly planning
for human-robot collaboration in the manufacturing sector
and we present promising early results that show it can be
applied to real examples. A key challenge one faces when
using description logic is the unpredictable nature of auto-
mated reasoners. This is not avoidable when the reasoner
has to deal with high-complexity logics. Therefore, the logics
underlying TooL is limited to a polynomial time tractable
fragment of description logic. Because the DSL is imple-
mented as a shallow embedding and we use off-the-self tools,
we expect that the approach can easily be adapted to other
domains. We plan to continue to explore the embedding of
low complexity logics in shallow DSLs as a bridge between
declarative programming and imperative programming.

As part of this project, we realized that many of the chal-
lenges faced by “traditional” industries are very similar to
the challenges of software development. This is due to the
integration of automated and decentralized robotic systems
which allow a degree of flexibility that used to be only seen
in software system. That offers an opportunity to reuse and
rethink the established solutions from the field of software
development in order to improve industrial processes better.
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