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Abstract— Abstraction-Based Controller Synthesis (ABCS) is
an emerging field for automatic synthesis of correct-by-design
controllers for non-linear dynamical systems in the presence of
bounded disturbances. A major drawback of existing ABCS
techniques is the lack of flexibility against changes in the
disturbance model; any change in the model results in a
complete re-computation of the abstraction and the controller.
This flexibility is relevant to situations when disturbances
are learned or estimated during operation in an environment
which is previously not known precisely. As time passes, the
disturbance model is progressively refined. The monolithic
nature and high computational cost of existing algorithms make
ABCS unsuited for such scenarios.

In this paper, we present an incremental algorithm to locally
adapt abstractions to changes in the disturbance model. Only
the parts of the space which are affected by the changes are
updated and the rest of the abstraction is reused. Our new
abstraction method allows to apply existing incremental tech-
niques to update the discrete controller locally for the changed
abstraction. This results in an incremental ABCS algorithm. We
empirically show the benefit of dynamic abstraction adaptation
on two large examples: a 5-dimensional vehicle model and a
12-dimensional quadrotor model. In both cases, the speed-up
over complete re-computation is significant.

I. INTRODUCTION

Abstraction-based controller synthesis (ABCS) is a fully
automated model-based controller synthesis technique for
non-linear, continuous dynamical systems with respect to
temporal control objectives [22], [4], [10], [19], [17], [12].
In ABCS, a model of the non-linear dynamical system,
under sampled-time semantics, is abstracted to a finite-state,
two-players game. Using automata-theoretic algorithms for
reactive synthesis [15], one can automatically compute an
abstract controller which can be refined to a continuous
controller for the original system. The correctness of the
technique depends on the existence of an alternating refine-
ment or feedback refinement relation [1], [14], [17], [19]
between the original system and its abstraction.

Like any other model-based controller synthesis tech-
niques, the formal guarantees of ABCS rely on the assump-
tion of an accurate system model. The system model is
typically of the form

ẋ ∈ f(x, u) + J−d, dK
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where x is the state vector, u is the control input, f is
a function representing the nominal (unperturbed) dynamic
model of the system, and d is a vector with non-negative ele-
ments representing the perturbation bound. The perturbation
bound captures the aggregate of both modeling inaccuracies
and the environmental disturbances. It is because the exact
system model is of such central importance that, in safety
critical applications, the system designers are forced to use
the most pessimistic bound on d to capture the effect of any
unforeseen deviation of the model that might appear in the
future. This often leads to an excessively restrictive controller
which fails to suit any practical purpose.

Instead, we would be better off starting with a more
optimistic perturbation model and, then, update the controller
when changes happen. Unfortunately, whenever there is any
change in the model, no matter how small, the abstraction
and the controller need to be computed from scratch. This is
wasteful and impractical especially when the changes only
affect a small part of the system model’s state space.

In this paper, we present an adaptation procedure of system
abstractions to local changes in the perturbation bound d
of the system model. For this purpose, we first switch to a
slightly more general form of the system model admitting a
state and input-dependent perturbation bound:

ẋ ∈ f(x, u) + J−d(x, u), d(x, u)K,

where for any given control input u, d(·, u) is a continuous
function. We assume that the nominal dynamics f remain
fixed. Then given an initial abstraction A of the system,
and a new perturbation bound d′(·, ·) with the property
that the value of d(·, ·) and d′(·, ·) differ only on a known
subset of their arguments, we show how an abstraction A′
of ẋ ∈ f(x, u) + J−d′(x, u), d′(x, u)K can be obtained, by
changing the abstraction A as little as possible. The resulting
abstraction allows to apply existing incremental techniques
for dynamic synthesis over finite state game graphs to update
the existing discrete controller locally [7]. This would result
in an incremental ABCS algorithm.

To explain our proposed adaptation procedure for system
abstraction, we first recall how abstractions are typically
computed. A simple but effective abstraction procedure first
partitions the state and input spaces using disjoint hypercubes
to form the abstract state space. Then, a non-deterministic
transition relation is computed over this abstraction. The
transition relation provides, for each state-input pair, the
possible states that can be reached under the effect of the
dynamics in the presence of disturbances. This approach has
been implemented in several tools [16], [20], [12], [13].
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Fig. 1. Each square represents an abstract state. The grey regions form R̂.
The lines represent trajectories in [0, τ ]. A nominal trajectory starting at A
may not pass through R̂, but a perturbed trajectory starting at B may, and
the new disturbance may give rise to the red trajectory, which gives rise
to a new transition in the abstraction. The updated disturbance may also
invalidate a previous trajectory, removing an abstract transition.

Essentially, adapting the abstraction requires a partial re-
computation of the abstract transitions for the state-input
pairs affected by the changes in the disturbance model.
Identifying such state-input pairs is the core of our algorithm.
Assume that the disturbance has changed in a region called
R̂. The challenge is that even though we precisely know
the region R̂, there might be other states around R̂ from
where trajectories could enter R̂. Even more challenging is
to address those trajectories which only enter R̂ from outside
during the inter-sampling period, and leave R̂ before the next
sampling takes place (see Fig. 1). We detect these cases by
peeking in the intermediate computations of the numerical
solver, and marking all the intermediate state-input pairs
from where trajectories might have entered R̂. Our algorithm
runs in time proportional to the size of the region for which
the disturbance model changes, inflated by a term depending
on the speed of the unperturbed dynamics. In many typical
scenarios, if the region of change is small compared to the
entire state space, the dynamic algorithm can be significantly
faster than a complete re-computation.

In the following, we motivate our problem and informally
present our approach using an example of a robotic vehicle
in a not precisely known environment.

Motivating Example

Consider the example of a vehicle inside a building which
tries to reach the location B starting from location A while
avoiding obstacles. Let us assume that the vehicle only has
a rough estimate of the environment in the beginning, and
as it moves around the building, it gathers more and more
environmental data using its sensors. Any new information
about the environment can then be used to update the
abstraction and the controller. Fig. 2 captures three different
phases of the controller under changing environment data: (a)
corresponds to the initial controller, and (b) and (c) represent
two subsequent updates.

As can be seen in Fig. 2(a), the vehicle has to pass
through two rooms R1 and R2, and either of the two
corridors C1 and C2 in order to reach B. Assume that
the disturbance values in R1, R2, C1 and C2 are given by
the vectors w1, w2, w1 and w3 respectively, where w1 <

w2 < w3 (element-wise). Initially, the disturbance is set
to w1 everywhere (Fig. 2(a)). We start by synthesizing a
symbolic controller off-line using ABCS. During the closed
loop operation/simulation phase, when the vehicles reaches
near R2, it gathers that the actual disturbance in R2 is w2

(the hatched part marks a change in disturbance). Instead
of an expensive complete re-computation of the abstraction,
we only update the transitions in and around R2. As the
transitions may change, the controllable region of the state
space might change as well (Fig. 2(b)). The green region
in the state space is the controller domain (set of winning
states in synthesis), and the purple region is outside the
controller domain (set of losing states in synthesis). For
instance, the narrow passage above the obstacle in R2 is
no longer passable due to the increased disturbances.

The second re-computation takes place when the vehicle
is close to C2, when the sensor data suggests that the actual
disturbance in C2 is w3 (cross-hatched in Fig. 2(c)). Now w3

is so high that the whole corridor C2 becomes inaccessible,
and the updated controller makes the vehicle take the corridor
C1 (see Fig. 2(c)).

For a 3-dimensional vehicle model [19], and for
disturbance values w1 = (0.01, 0.01, 0.01), w2 =
(0.033, 0.033, 0.033), w3 = (0.07, 0.06, 0.07), the arrow-
labels in Fig. 2 depict comparisons between the time needed
for the local incremental updates of the abstraction and the
global complete re-computations of the same. It is observed
that the local update is approximately 3× faster during the
first re-computation, and a whopping 12× faster during the
second re-computation. It is evident that the smaller the area
of disturbance update, the greater is the speedup.

Related Work

Adaptability of controllers with changing system model
while providing formal guarantees has been explored in
several recent papers. One group of results assume that
the system behavior is accurately known in the form of a
parametric model over a known parameter space [21], [18].
An adaptive control scheme then synthesizes a control policy
off-line, which can adapt to all possible changes in parameter
values. However, analyzing the effects of all parameters puts
a high computational burden on such techniques.

The second group of results is based on the idea of
learning the environment from sensor data, while remaining
under the supervision of a safe controller [9], [2], [5]. Our
work is inspired by this line of research, and we intend to
extend this in the context of ABCS. This paper can be viewed
as a first step in that direction. The biggest advantage of
ABCS is that it can handle at the same time a wide variety
of nonlinear system models and a very expressive class of
control specifications, e.g. linear temporal logic.

In this paper, we keep open the question of how to ensure
that the present system state is still winning after a controller
re-computation, and implicitly assume that all the trajectories
can be safely traced backwards always [11], [8]. We also
assume that the information of the disturbance values is



R1

R2

C1

C2

B

A

(a) (b) (c)

local: 2 s
vs.

global: 6 s

local: 0.5 s
vs.

global: 6 s

Fig. 2. Reach-avoid problem for a vehicle to reach the target (B) from the initial position (A) while avoiding obstacles (black) and rejecting dynamic
disturbances. The hatched region and the cross-hatched region have disturbance values w2 and w3 respectively, while the remaining work space has
disturbance value w1 (w1 < w2 < w3 element-wise). Initially, ABCS is performed while assuming a disturbance value of w1 in the overall work space.
The resulting (partial) closed-loop trajectory is shown in (a). During deployment, actual disturbance values are observed, the abstraction is updated and the
controller is re-synthesized. The resulting (partial) trajectories for updates w.r.t. w2 and w3 are depicted in (b) and (c), respectively. The controller domain
is indicated in green, with the violet areas indicating its complement. The controller domain reduces during re-computation, due to observed increases in
the disturbance value. Computation times for local updates (top) and global re-computation (bottom) of the abstraction are indicated between sub-figures.

available to the system, either through direct measurement
or indirect means.

II. PRELIMINARIES

We recall the setting of ABCS.

A. Systems and Refinement

A system S = (X,U, F ) consists of a state space X , an
input space U , and a transition relation F ⊆ X × U × X .
A system is called finite if X and U are finite sets. A run
of a system is a finite or infinite sequence ξ = x0x1 . . .
such that for each i ∈ dom(ξ) there is an ui ∈ U such that
(xi, ui, xi+1) ∈ F . The set of runs of S is denoted B(S)
and the set of runs of S starting from a state x ∈ X is
denoted B(S)(x). A controller C : X → U is a function
mapping states to inputs which restricts the set of behaviors
of a system: a run ξ = x0x1 . . . is compatible with C if for
each i, we have (xi, C(xi), xi+1) ∈ F .

The goal of abstraction-based controller synthesis is to
solve the problem on an abstract system and then refine a
controller to the original system. For this to work, we need a
suitable notion of abstraction. Feedback refinement relations
provide such a notion [1], [19].

Definition 1 (Feedback refinement relations): Let Si =
(Xi, Ui, Fi) for i ∈ {1, 2} be two systems s.t. U2 ⊆ U1.
Let πi : Xi → 2Ui be the mapping πi(x) = {u ∈ Ui | ∃x′ ∈
Xi · (x, u, x′) ∈ Fi} giving the set of allowed inputs in
state x of Si. A feedback refinement relation from S1 to S2

is a relation Q ⊆ X1 ×X2 such that for all x1 ∈ X1 there
is a unique x2 ∈ X2 such that (x1, x2) ∈ Q, and for all
(x1, x2) ∈ Q, the following holds:

(i) π2(x2) ⊆ π1(x1) and
(ii) for all u ∈ π2(x2), for all x′1 ∈ X1 such that

(x1, u, x
′
1) ∈ F1 there is an x′2 ∈ X2 such that

(x2, u, x
′
2) ∈ F2 and (x′1, x

′
2) ∈ Q.

We use S1 4Q S2 to represent that Q from S1 to S2 is
a feedback refinement relation. We say S2 is an abstraction
of S1 if S1 4Q S2. It is well known that S1 4Q S2 implies
that any controller C2 : X2 → U2 solving a control problem

on S2 can be refined to a controller C1 : X1 → U1 solving
the control problem on S1 [1].

B. Time-Sampled Control Systems
We consider continuous-time control systems Σ =

(X,U, d, f), where X = Rn is the state space, U ⊂ Rm
is the input space, d : X ×U → X is a function continuous
in X modeling the upper-bound of the state dependent
disturbances, and f : X × U → X is a locally lipschitz
continuous function for all u ∈ U modeling the unperturbed
system dynamics. The overall dynamics is expressed by the
following differential inclusion:

ẋ ∈ f(x, u) + J−d(x, u), d(x, u)K. (1)

Since the set of disturbances J−d(x, u), d(x, u)K at any given
state x ∈ X and input u ∈ U is symmetric about 0n,
hence w.l.o.g. we assume that d(x, u) is positive for all
x ∈ X and input u ∈ U . We assume that f is explicitly
known and is continuously differentiable in x for all u ∈
U . The set J−d(x, u), d(x, u)K represents the set of all
possible disturbances capturing the unmodeled dynamics and
environmental uncertainties. Given an initial state x0 ∈ X ,
a constant control input1 u ∈ U for time tf ∈ R+ and any
interval I ⊂ [0, tf ], a possible evolution of Σ in I is given
by any continuous trajectory ξu : I → X which satisfies
ξ̇u(t) ∈ f(ξu(t), u) + J−d(ξu(t), u), d(ξu(t), u)K. Moreover
we define the nominal trajectory ϕx0u : I → X , which
satisfies the unperturbed differential equation ϕ̇x0u(t) =
f(ϕx0u(t), u) and ϕx0u(0) = x0.

Given a fixed time sampling parameter τ > 0, we define
a system Στ = (X,U, fτ ) that represents the sampled-time
representation of a contol system Σ, where fτ ⊆ X×U×X
is the transition relation s.t. for all (x, u) ∈ X ×U , we have
(x, u, x′) ∈ fτ iff there is a solution of (1) for the constant
input u s.t. ξ(0) = x and ξ(τ) = x′. The state space of Στ
is still infinite; our goal is to define a finite abstract system
Σ̂ that is an abstraction of Στ .

1We restrict our notation to piecewise constant control inputs as more
general control inputs will be unnecessary for the later part.



III. GLOBAL COMPUTATION OF ABSTRACTION

Fix a control system Σ = (X,U, d, f) and its sampled-
time representation Στ = (X,U, fτ ) for a fixed sampling
time τ > 0. Our goal is to compute a finite-state abstraction
Σ̂ = (X̂, Û , f̂). We work in the usual setting of ABCS,
where an abstraction is obtained by 1) partitioning the state
space and input space of Στ into finitely many hypercubes,
and 2) over-approximating the transitions to obtain the de-
sired finite-state abstraction Σ̂.

We consider abstract state spaces defined by hyper-
rectangle covers. A hyper-rectangle Ja, bK with a, b ∈
(R ∪ {±∞})n defines the set {x ∈ Rn | ai ≤ xi ≤
bi for i ∈ {1, . . . , n}}; it is non-empty if a < b (element-
wise). For η ∈ Rn>0, we say that a hyper-rectangle Ja, bK has
diameter η if |b− a| = η, where | · | represents the element-
wise absolute value. The center of a non-empty hyper-
rectangle Ja, bK, written ctr(Ja, bK), is the point ( 1

2 (b1 −
a1), 12 (b2−a2), . . . , 12 (bn−an)). A set C of hyper-rectangles
is called a cover of the state space X if every x ∈ X belongs
to some hyper-rectangle in C.

In the following, we make the standard assumption that
there is a compact subset X ′ ⊆ X of the state space which
is of interest to the control problem. Given a discretization
parameter η ∈ Rn>0, the abstract state space X̂ is a (finite)
cover of the compact set X ′ with hyper-rectangles of diame-
ter η together with a finite number of larger hyper-rectangles
which cover X \X ′.

The abstract transition relation f̂ is defined as an over-
approximation of the reachable states in a single time sam-
pling period τ . The over-approximation is formalized by a
growth bound.

Definition 2 (Growth bound): Let Σ = (X,U, d, f) be a
control system. Given a fixed sampling time τ > 0 and sets
K ⊂ X and U ′ ⊂ U , a growth bound is a map βτ : Rn ×
Rn>0 × U ′ → Rn>0 satisfying the following conditions:

(i) βτ (p, r, u) ≥ βτ (p, r′, u) whenever r ≥ r′ and u ∈ U ′;

(ii) for all p ∈ K and u ∈ U ′, [0, τ ] ⊂ domϕpu, and if ξu
is a trajectory of (1) on [0, τ ] with ξu(0) ∈ K then

| ξu(τ)− ϕpu(τ) |≤ βτ (p, | ξu(0)− p |, u) (2)

holds component-wise. Recall that ϕpu(t) denotes the
nominal trajectory starting from p.

Def. 2 is an adaptation of the growth bound in [19]; the
difference is that our growth bound also depends on the ini-
tial state of the nominal trajectory. The intuition behind this
extra requirement is that the deviation of the actual trajectory
from the nominal trajectory is no longer independent of the
path of the trajectory when the disturbance is not uniform.
This will be clear in the subsequent development.

We introduce COMPUTEGROWTH as a black-box pro-
cedure for growth bound computation. (A possible imple-
mentation of COMPUTEGROWTH can be found in [3], and
is omitted here due to space constraints.) The inputs to
the procedure COMPUTEGROWTH are (i) the center of the
current abstract state ctr(x̂) (i.e., the starting point of the

nominal trajectory), (ii) the input û, (iii) the time discretiza-
tion parameter τ , (iv) the state-space discretization parameter
η, and, optionally, (v) some set of abstract states R̂ ⊆
X̂ . The outputs of COMPUTEGROWTH are (i) ϕctr(x̂)û(τ),
(ii) βτ (ctr(x̂), 12η, û), and (iii) a boolean flag isOverlap

(when R̂ is specified) which is set to true iff there is t ∈ [0, τ ]
s.t. [ϕxû(t) − r(t), ϕxû(t) + r(t)] ∩ R̂ 6= ∅. The role of the
set R̂ and the flag isOverlap2 will be clear in Sec. IV.
Note that additional assumptions on the function d(·, ·)
might be required depending on how COMPUTEGROWTH
is computed.

Given the notion of state space partition and growth bound,
we can now define the finite-state abstraction as follows:

Definition 3: Let Σ = (X,U, d, f) be a control system,
let τ > 0 be a sampling time, η ∈ Rn>0 a discretization
parameter, and βτ : Rn×Rn>0× Û → Rn>0 a growth bound.
A finite-state abstraction Σ̂ = (X̂, Û , f̂) of Στ consists of a
finite set X̂ which forms a cover of X with hyper-rectangles
of diameter η, a finite set Û ⊆ U of inputs, and a transition
relation f̂ ⊆ X̂ × Û × X̂ which satisfies, for all x̂, x̂′ ∈ X̂
and û ∈ Û , (x̂, û, x̂′) ∈ f̂ iff(

ϕctr(x̂)û(τ) + J−γ, γK
)
∩ x̂′ 6= ∅, (3)

where γ = βτ (ctr(x̂), 12η, û).
The procedure called GLOBALABS presented in Alg. 1

summarizes the steps for computing the finite-state abstrac-
tion of a control system Σ for some given discretization
parameters η and τ .

The following theorem is adapted from [19, Thm. VIII.4].
Theorem 1: For every control system Σ = (X,U, d, F ),

for every sampling time τ , state discretization η, and growth
bound β, we have Στ 4Q Σ̂, through the feedback refine-
ment relation (x, x̂) ∈ Q iff x ∈ x̂.

IV. LOCAL RE-COMPUTATION OF ABSTRACTION

Consider the control system Σ = (X,U, d, f) and assume
that we have computed an abstraction Σ̂ = (X̂, Û , f̂) using
parameters τ and η. Now imagine that the model Σ is up-
dated to Σ′ = (X,U, d′, f), where d′ is the new disturbance
function. For example, a new model of the disturbance can
be learnt over the course of operation or due to availability of
better knowledge about the system. The existing abstraction
Σ̂ may no longer be a sound abstraction of the updated model
Σ′. One option is to recompute a new abstraction but this
may be wasteful if, e.g., d′ differs from d only in a small
part of the state space. Our second main contribution is an
algorithm that instead of computing the new abstraction Σ̂′

from scratch, makes minimal changes in Σ̂ to obtain Σ̂′.
We assume that we know a set R of states over-

approximating the set of states and inputs where the functions
d and d′ differ:

{(x, u) ∈ X × U | d(x, u) 6= d′(x, u)} ⊆ R. (4)

2The feature of COMPUTEGROWTH to support R̂ as input and provide
isOverlap as output is not there in the implementation in [3]. However it
can be easily added in the internal ODE solver that isOverlap uses.



Its abstract representation is the set

R̂ := {(x̂, û) ∈ X̂ × Û | ∃x ∈ x̂. (x, û) ∈ R}. (5)

The main question that needs to be addressed is for which
abstract states outgoing transitions need to be re-computed.
Clearly, all transitions leaving states in R̂ may be updated.
In addition, it is possible that trajectories originating from a
neighboring abstract state to some state in R̂ pass through
a state in R̂ (see Figure 1). Thus, such transitions may also
be updated. Moreover, for any such updated transition, we
also check its neighbors for outgoing trajectories that may go
through R̂ (Fig. 1: the trajectory from C). This way, changes
propagate through the abstract state space.

We now define the algorithm formally. First, define the set
of neighbors of an abstract state x̂ ∈ X̂ as

N (x̂) := {x̂′ ∈ X̂ | |ctr(x̂′)− ctr(x̂)| ≤ η}. (6)

We generalize N for a set of states P ⊆ X̂ by defining

N (P ) :=
⋃
x̂∈P

N (x̂). (7)

Alg. 2 gives the algorithm for local re-computation of
transitions due to changes in the disturbance. The algorithm
uses a queue Q—the frontier—of state-input pairs (x̂, û)
for which transitions need to be recomputed, and uses a
set done ⊆ X̂ × Û to keep track of previously queued
(x̂, û) pairs. Initially, all pairs (x̂, û) s.t. (x̂, û) ∈ R̂ or
∃x̂′. (x̂′, û) ∈ R̂ ∧ x̂ ∈ N (x̂′) are enqueued in Q and are
also stored in done (Line 2-3).

The algorithm iteratively processes state and input pairs
from the queue, updates the transition relation, and propa-
gates the effect of changes by adding more pairs to the queue.
The while loop (Lines 4-17) dequeues state-input pairs one
by one from Q (Line 5), deletes the associated old transitions
(Line 6), computes new transitions (Line 7-8), and extends
the frontier by queuing new state-input pairs (Lines 9-16).

The queuing operation keeps track of the state-input
pairs for which some trajectories may cross R̂, possibly
in transience. This bookkeeping is taken care of by the
procedure called COMPUTEGROWTH. If isOverlap is true
for some state-input pair (x̂, û), then all the states in N (x̂)
are suspected to have some outgoing transitions entering R̂ as
well. So all the states in N (x̂), which have not been queued
before (checked using done), are queued to Q. The process
continues until Q is empty.

The following theorem states that Alg. 2 is sound: it
computes the same abstract transition system as the standard
abstraction procedure working from scratch.

Theorem 2: Let Σ = (X,U, d, f) and Σ′ = (X,U, d′, f)
be two control systems. Let R and R̂ be given as in (4)
and (5) respectively. For parameters τ and η, let Σ̂ =
(X̂, Û , f̂) and Σ̂′ = (X̂, Û , f̂ ′) be the associated finite state
abstractions. Then Σ̂′ = LOCALABS(Σ′, Σ̂, R̂, η, τ).

Proof: We need to show that any state-input pair (x̂, û)
which has some outgoing transition entering R̂ is eventually
queued in Q. Assume, towards a contradiction, that there is
a state-input pair (x̂, û) which is never queued in Q, and

Algorithm 1 Procedure GLOBALABS

Input: Σ = (X,U, f, d), Û ⊆ U, η, τ
Output: Σ̂ = (X̂, Û , f̂)

1: X̂ ← a cover of X with discretization parameter η
2: f̂ ← ∅
3: for all (x̂, û) ∈ X̂ × Û do
4: (x′, r′, ·) = COMPUTEGROWTH(ctr(x̂), û, η, τ, ·)
5: f̂ ← f̂ ∪ {(x̂, û, x̂′) | Jx′ − r′, x′ + r′K ∩ x̂′ 6= ∅}
6: end for
7: return Σ̂ = (X̂, Û , f̂)

Algorithm 2 Procedure LOCALABS

Input: Σ′ = (X,U, f, d′), Σ̂ = (X̂, Û , f̂), R̂, η, τ
Output: Σ̂′ = (X̂, Û , f̂ ′)

1: f̂ ′ ← f̂
2: Q ← R̂ ∪ {(x̂, û) | ∃x̂′. (x̂′, û) ∈ R̂ ∧ x̂ ∈ N (x̂′)}
3: done ← R̂ ∪ {(x̂, û) | ∃x̂′. (x̂′, û) ∈ R̂ ∧ x̂ ∈ N (x̂′)}
4: while Q 6= ∅ do
5: (x̂, û)← Q.dequeue()
6: f̂ ′ ← f̂ ′ \ {(x̂, û, x̂′) | (x̂, û, x̂′) ∈ f̂}
7: (x′, r′, isOverlap) =

COMPUTEGROWTH(ctr(x̂), û, η, τ, R̂)
8: f̂ ′ ← f̂ ′ ∪ {(x̂, û, x̂′) | Jx′ − r′, x′ + r′K ∩ x̂′ 6= ∅}
9: if isOverlap then

10: for all ŷ ∈ N (x̂) do
11: if (ŷ, û) /∈ done then
12: Q.enqueue(ŷ, û)
13: done ← done ∪ {(ŷ, û)}
14: end if
15: end for
16: end if
17: end while
18: return Σ̂′ = (X̂, Û , f̂ ′)

there is a trajectory ξû(·) and some t ∈ [0, τ ] s.t. ξû(0) ∈ x̂
and ξû(t) ∈ ∪x̂∈R̂x̂. Let us generalize N (·) to multi-step
neighbors: N 1(P ) := N (P ) and N i+1(P ) := N (N i(P )).
By our assumption it must be the case that there exist i, j
with i < j s.t. there exists ŷ ∈ N j(x̂) with (ŷ, û) being
queued in Q, and there is no ẑ ∈ N i(x̂) s.t. (ẑ, û) is ever
queued in Q. This is only possible if there is a discontinuity
in ξû(·), which is a contradiction.

The following theorem characterizes the time complexity
of LOCALABS in terms of the number of state-input pairs
processed. The time complexity is bounded by a factor
depending on |R̂| and a factor depending on the speed of
the underlying system dynamics (how far a trajectory can go
in one sampling period). We introduce the notation ⊕ which
inflates the boundary of a set R̂, by an extent given by the
set Ŝ = J−s, sK ∈ Nn:

R̂⊕ Ŝ := {x̂ ∈ X̂ | ∃x̂′ ∈ R̂ .

∃ŷ ∈ Ŝ . ctr(x̂) = ctr(x̂′) + ŷ · η}, (8)

where the vector product is defined component-wise.
Theorem 3: Let Σ = (X,U, d, f) be a control system

with X = Rn. For parameters τ and η, define the n-
dimensional vector s := dsupx,u(|f(x, u) + d(x, u)| · τ/η)e,
and the set Ŝ = J−s, sK ∈ Nn, where the divisions and



d·e are defined component-wise. Let the time complexity of
COMPUTEGROWTH be some function h(n) of the system
dimension n. Then the time complexity of LOCALABS is
O
(

min{|X̂| · |Û |, |R̂⊕ Ŝ|} · h(n)
)

.
Proof: The time complexity of LOCALABS depends on

the number of state-input pairs queued in Q. This number
is proportional to the size of |R̂| expanded by how far a
state can travel in the sampling time τ . Thus, an upper
bound on the number of states is min{|X̂| · |Û |, |R̂ ⊕ Ŝ|}.
Since each state-input pair is queued only once, and for
each such queued pair the procedure COMPUTEGROWTH is
run only once, hence the time complexity of LOCALABS is
O
(

min{|X̂| · |Û |, |R̂⊕ Ŝ|} · h(n)
)

.
In contrast, the run time of GLOBALABS is

O
(
|X̂| · |Û | · h(n)

)
. Thus, when |R̂ ⊕ Ŝ| � |X̂| · |Û |,

LOCALABS is significantly faster than GLOBALABS, and
when |R̂ ⊕ Ŝ| ≈ |X̂| · |Û |, LOCALABS and GLOBALABS
have comparable performance. (The trend is clearly visible in
Fig. 4 where we compare computation times of LOCALABS
and GLOBALABS as a function of |R̂|/(|X̂| · |Û |) for a
vehicle example.)

Remark 1 (Selective enqueuing): As apparent from the
proof of Theorem 3, a simple over-approximation of the set
of state-input pairs to be enqueued in Q in Alg. 2 could
be {R̂ ⊕ Ŝ} × Û . This over-approximation might lead to
enqueuing spurious states from which no transitions enter R̂
in time τ , and hence they do not require re-computation. Our
algorithm LOCALABS dynamically and selectively enqueues
state-input pairs only when it’s absolutely necessary. The
benefit of this selective enqueuing is most prominent if the
speed of the system dynamics is not uniform in all directions,
in which case the estimate {R̂⊕Ŝ}×Û is overly conservative.

V. A NOTE ON THE PARALLEL COMPUTATION OF
ABSTRACTION UPDATES

ABCS methods are ultimately limited by the size of the
model’s state and input spaces. Unfortunately, the number of
hypercubes in the abstraction is exponential in the number of
dimensions. In order to handle larger examples, the computa-
tion needs to be parallelized. Fortunately, the computation of
transitions for the state-input pairs are mutually independent,
hence they can be executed in parallel. This is extremely
useful for scaling ABCS to very large dimensional systems
by maximally utilizing the available computational resources.
Our largest example has 12 dimensions and our implemen-
tation runs on a 192-cores machine (see Section VII).

Parallelizing GLOBALABS is straightforward. The for-
loop (Alg. 1 lines 3-5) is replaced by a parallel for loop.

For the LOCALABS algorithm, the situation is more com-
plicated. The while-loop in Line 4 of Alg. 2 is not as
straightforward to parallelize. This is because a state-input
pair dequeued from Q comes from a previous iteration of
the same loop. Q is a shared data structure and, therefore,
modifying it requires extra precautions. Our implementation
alleviates this by enqueuing and dequeuing batches of state-
input pairs but some overhead remains. Q is still a major

Algorithm 3 Parallelized Procedure SEMILOCALABS

Input: Σ′ = (X,U, f, d′), Σ̂ = (X̂, Û , f̂), R̂, η, τ
Output: Σ̂′ = (X̂, Û , f̂ ′)

1: f̂ ′ ← f̂
2: parfor (x̂, û) ∈ {R̂⊕ Ŝ} × Û do
3: f̂ ′ ← f̂ ′ \ {(x̂, û, x̂′) | (x̂, û, x̂′) ∈ f̂}
4: (x′, r′, ·) = COMPUTEGROWTH(ctr(x̂), û, η, τ, ·)
5: f̂ ′ ← f̂ ′ ∪ {(x̂, û, x̂′) | Jx′ − r′, x′ + r′K ∩ x̂′ 6= ∅}
6: end parfor
7: return Σ̂′ = (X̂, Û , f̂ ′)

point of contention.
To get around this problem we adopt a more pragmatic

approach. We can recompute more state-input pairs as long
as we save more time because of less synchronization.
We simply use the idea as briefed in Rem. 1 to restrict
the GLOBALABS procedure to a smaller region. The final
algorithm SEMILOCALABS is shown in Alg. 3.

Although this is theoretically sub-optimal, it is simpler
to implement and can be faster than using a shared queue.
More precisely, when the speed of the dynamics is similar
across the whole space, {R̂⊕Ŝ}×Û is a rather precise over-
approximation of what needs to be recomputed. On the other
hand, as Ŝ is computed over the whole state space, if R̂ is
a region where the dynamics are slower than in other parts
of the state space SEMILOCALABS will not be as good. We
compare the different algorithms in Table I. It can be seen
that for the vehicle model, SEMILOCALABS explores the
whole state space due to a large enough value of τ , and the
run-time is also much worse than LOCALABS. On the other
hand for the quadrotor model, even though SEMILOCALABS
explores more states, it performs better than LOCALABS.

Our parallelized implementation relies on OpenMP and
runs on a single, albeit large, machine. We believe it can
be parallelized further. Recently, Khaled et al. presented a
parallel implementation of ABCS in their tool pFaces [13].
Their parallelization goes further, distributes the computation
across multiple machines, and uses GPUs.

VI. A NOTE ON INCREMENTAL ABCS

Within the ABCS work-flow, the computed abstract transi-
tion system is the basis for discrete controller synthesis. The
resulting controller is further refined into a continuous one
to actuate the underlying dynamical system. This implies,
that a local update of the abstract transition system induced
by our new technique might also change the corresponding
controller synthesis problem leading to a different control
implementation. E.g., for the motion control of a unicycle
robot depicted in Fig. 1, the disturbance update in region
C2 resulted in a new control policy which made the robot
move through region C1 to reach the target (B), while it was
aiming to pass C2 before the abstraction update.

Similar to locally updating the abstraction, control policies
computed via reactive synthesis can also be updated dynam-
ically. This has been shown by Chatterjee and Henzinger
[7] in the context of finite state games to implement Büchi



objectives. While we expect that the algorithm in [7] can be
readily transferred to the setting of ABCS, our current imple-
mentation re-computes control strategies from scratch. In our
examples, this has little effect on the overall performance due
to relatively fast synthesis step. For instance, the synthesis
takes only 0.3s for the 3-dimensional vehicle model (see
Section I), 17s for the 12-dimensional quadrotor model, and
2s for the 5-dimensional vehicle (see Section VII) compared
to the much higher respective abstraction time.

VII. EXPERIMENTAL RESULTS

We implemented GLOBALABS, LOCALABS, and
SEMILOCALABS as an extension of SCOTSv0.2 [20]
available on github3. We evaluated our algorithms on two
benchmark examples with different dynamics to show
the applicability of our method. Beyond the incremental
algorithms and the parallelization, we also modified the
procedure computing the transitions to account for state-
input dependent disturbances [3]. The code base is written
in C++ and parallelized using OpenMP. All the experiments
were performed on an Intel(R) Xeon(R) Processors E7-8850
v2 (2.30GHz) with 192 cores and 2048 GB memory. A
performance comparison of different algorithms is given in
Table I. Further, Fig. 4 shows how algorithms perform w.r.t.
a varying size of the region where the disturbance change.

A. Quadrotor Dynamics

We consider the dynamics of a quadrotor ẋ ∈ f(x, u) +
J−d(x1, x2), d(x1, x2)K, where the state x and the dis-
turbance function d are 12-dimensional vectors, u is 4-
dimensional, and d is only assumed to depend on x1 and
x2. The nominal dynamics are given by

f(x, u) =



x7
x8
x9

cos x6

sin x5
x11 + cos x6

cos x5
x12

x11 cosx6 − x12 sinx6
x10 + x11 sinx6 tanx5 + x12 cosx6 tanx5
− 1
m (sinx6 sinx4 + cosx6 cosx4 sinx5)Ω1

− 1
m (cosx4 sinx6 − cosx6 sinx4 sinx5)Ω1

g − 1
m (cosx6 cosx5)Ω1

Iy−Iz
Ix

x11x12 + 1
Ix

Ω2
Iz−Ix
Iy

x10x12 + 1
Iy

Ω3
Ix−Iy
Iz

x10x11 + 1
Iz

Ω4



,

and Ω1 = bl(u21 + u22 + u23 + u24), Ω2 = bl(u23 − u21), Ω3 =
bl(u24−u22), Ω4 = d(u22 +u24−u21−u23) for certain constant
parameters m, g, b, l, d, Ix, Iy, Iz . The bounds on the state
variables are given by x1 ∈ [−2.5, 2.5], x2 ∈ [−2.5, 2.5],
x3 ∈ [−2.5, 2.5], x4 ∈ [−30π180 ,

30π
180 ], x5 ∈ [−30π180 ,

30π
180 ],

x6 ∈ [−30π180 ,
30π
180 ], x7 ∈ [0, 0.9], x8 ∈ [0, 0.9], x9 ∈ [0, 0.9],

x10 ∈ [−0.05, 0.05], x11 ∈ [−0.05, 0.05], and x12 ∈
[−0.05, 0.05]. The bounds on the control inputs are given
by u1 ∈ [100, 2500], u2 ∈ [100, 2500], u3 ∈ [100, 2500],
and u4 ∈ [100, 2500]. A more detailed explanation of the

3https://github.com/YunjunBai/online_controller

system model and the physical meaning of the variables can
be found in [6].

X
Y

Z

(a) Initial disturbance model

X
Y

Z

(b) New disturbance model

Fig. 3. Disturbance model in dimension 11 for the quadrotor example.
X- and Y-axis represent state variable x1 and x2. Z-axis represents d11.
(a) shows the disturbance model used to compute the initial abstraction. (b)
shows the updated disturbance model. The shaded region in (b) is R̂.

Initially, the disturbances di(·, ·) for i /∈ {10, 11}
are assumed to be uniformly zero, and d10(x1, x2) =
d11(x1, x2) = 0.123 for all x1, x2. Later, the disturbance
locally changes to d′ in region R̂ = [0.5, 2] × [−2, 0],
s.t. for (x1, x2) ∈ R̂, d′10(x1, x2) = 0.123 (same as
d), d′11(x1, x2) = d′12(x1, x2) = 0.523 (updated), and
d′i(x1, x2) = 0 for all i /∈ {10, 11, 12} (same as d). For
(x1, x2) /∈ R̂, we assume that d′(x1, x2) = d(x1, x2).
For technical reasons, the disturbance function needs to be
continuous in the state space. We assume that d′ is actually
modeled by a continuous function (e.g. using a rapidly
changing sigmoid function) in the boundary of R̂.

Note that R̂ only covers approximately 12.5% of the entire
state-space, and so a complete re-computation of abstraction
when d is changed to d′ is wasteful. This fact can be seen
from Table I by observing that the runtime for LOCALABS
is much smaller than that for GLOBALABS .

The parameters that we use for the abstraction are given
by ω = (400, 400, 400, 400), τ = 1 × 10−3s, and η =
(1.5, 1.5, 1.5, 20π180 ,

20π
180 ,

20π
180 , 0.3, 0.3, 0.3, 0.05, 0.05, 0.05).

B. Vehicle Dynamics

We consider a 5-dimensional model ẋ ∈ f(x, u) +
J−d(x1, x2), d(x1, x2)K of a vehicle, where the disturbance
d is a function of x1, x2 and the nominal model is given by

f(x, u) =


α1x4 + α2x5
α3x4 + α4x5
r
2b (x5 − x4)

−d1x4 + b1u1 + b0u2
−d2x5 + b0u1 + b1u2,


with α1 = 0.5rx4(cosx3 + a sinx3), α2 = 0.5rx4(cosx3 −
a sinx3), α3 = 0.5rx4(sinx3 − a cosx3), α4 =
0.5rx4(sinx3 + a cosx3). The bounds on the state variables
are given by x1, x2, x4, x5 ∈ [0, 10], x3 ∈ [−3.5, 3.5], and
on the input variables by u1, u2 ∈ [0, 6].

Initially, the disturbances are given by d4(x1, x2) =
d5(x1, x2) = 0.01 and di(x1, x2) = 0 for i ∈ {1, 2, 3}.
Later, the disturbance locally changes to d′ in region
R̂ = [4, 7] × [2, 5], s.t. for (x1, x2) ∈ R̂, d′4(x1, x2) =
d′5(x1, x2) = 0.1 (updated), and d′i(x1, x2) = 0 for all
i ∈ {1, 2, 3} (same as d). For (x1, x2) /∈ R̂, we assume
that d′(x1, x2) = d(x1, x2). As before, we assume that d′

is actually modeled by a continuous function (e.g. using a
rapidly changing sigmoid function) in the boundary of R̂.



TABLE I
EXPERIMENTAL COMPARISON OF GLOBALABS, LOCALABS AND SEMILOCALABS. IT SHOWS THE NUMBER OF STATES AND INPUTS, THE SIZE OF THE

RE-COMPUTED REGION IN PERCENT AND THE RUNTIME OF GLOBALABS (LEFT). THE PERFORMANCE OF LOCALABS (MIDDLE) AND SEMILOCALABS

(RIGHT) IS SHOWN IN TERMS OF RUNTIME, RE-COMPUTED PORTION OF THE STATE SPACE, AND SPEEDUP W.R.T. GLOBALABS.

System |X̂| |Û | |R̂|/(|X̂| · |Û |) GLOBALABS LOCALABS SEMILOCALABS

time (s) time (s) re-computation relative time (s) re-computation relative

Quadrotor 1 259 712 625 12.5% 815.34 234.54 18.75% 3.5× 154.67 33.33% 5.3×
Vehicle 195 657 49 9% 34.27 8.12 14.4% 4.2× 35.46 100% 1×
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Fig. 4. Computation time of LOCALABS and GLOBALABS for different
sizes of R̂ in percentage of the state space in the quadrotor example.
LOCALABS is more efficient the smaller R̂.

(a) Initial disturbance model (b) New disturbance model

Fig. 5. Disturbance model in dimension 4 for the vehicle example. X-
and Y-axis represent state variables x1 and x2. Z-axis represents d4. (a)
shows the disturbance model used to compute initial abstraction. (b) shows
the updated disturbance model. The shaded region in (b) is R̂.

The parameters used for the abstraction are: η =
(1, 1, 1, 0.5, 1), ω = (1, 1), and τ = 0.3s.

It can be seen in Table I (second line, middle) that when
the disturbance changes in 9% of the state space, then
LOCALABS performs 4 times faster than GLOBALABS.

VIII. CONCLUSION

We have presented a technique for adapting system ab-
stractions to local changes in the external perturbations or
modeling uncertainties in the context of abstraction-based
controller synthesis. When the perturbation changes in some
parts of the state space, our adaptation procedure performs
a local re-computation of transitions within the existing
abstraction. This results in a substantial speed-up against
complete re-computation especially when the region with an
updated disturbance is small compared to the whole state
space. We also presented a non-trivial parallelized version
of our adaptation procedure. We showed the computational
benefit of our algorithm using two benchmark examples.
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