
PGCD: Robot Programming and Verification
with Geometry, Concurrency, and Dynamics

Gregor B. Banus̆ić
MPI-SWS

gbbanusic@gmail.com

Rupak Majumdar
MPI-SWS

rupak@mpi-sws.org

Marcus Pirron
MPI-SWS

mpirron@mpi-sws.org

Anne-Kathrin Schmuck
MPI-SWS

akschmuck@mpi-sws.org

Damien Zufferey
MPI-SWS

zufferey@mpi-sws.org

ABSTRACT
Robotics applications are typically programmed in low-level im-
perative programming languages, leaving the programmer to deal
with dynamic controllers affecting the physical state, geometric
constraints on components, and concurrency and synchroniza-
tion. The combination of these features —dynamics, geometry, and
concurrency— makes developing robotic applications difficult. We
present PGCD, a programming model for robotics applications
consisting of assemblies of robotic components, together with its
runtime and a verifier. PGCD combines message-passing concur-
rent processes with motion primitives, which represent continuous
evolution of trajectories in geometric space under the action of dy-
namic controllers, and explicit modeling of geometric frame shifts,
which allow relative coordinate transformations between compo-
nents evolving in space. We describe a verification algorithm for
PGCD programs based on model checking and SMT solvers that
statically verifies concurrency-related properties such as absence of
deadlocks and geometric invariants such as absence of collision dur-
ing motion. We have implemented a runtime for PGCD programs
that compiles down to imperative code on top of ROS and runs
directly on robotic hardware. We illustrate the programming model
and reasoning principles by building a number of statically verified
robotic manipulation programs on top of 3D-printed robotic arm
and cart assemblies.

CCS CONCEPTS
• Computer systems organization → Embedded and cyber-
physical systems; • Software and its engineering → Formal
software verification; System modeling languages;

KEYWORDS
cyber-physical systems, domain specific language, composition,
communication, geometry, verification

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICCPS ’19, April 16–18, 2019, Montreal, QC, Canada
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6285-6/19/04. . . $15.00
https://doi.org/10.1145/3302509.3311052

ACM Reference Format:
Gregor B. Banus̆ić, RupakMajumdar,Marcus Pirron, Anne-Kathrin Schmuck,
and Damien Zufferey. 2019. PGCD: Robot Programming and Verification
with Geometry, Concurrency, and Dynamics. In 10th ACM/IEEE Interna-
tional Conference on Cyber-Physical Systems (with CPS-IoTWeek 2019) (ICCPS
’19), April 16–18, 2019, Montreal, QC, Canada. ACM, New York, NY, USA,
10 pages. https://doi.org/10.1145/3302509.3311052

1 INTRODUCTION
Modern robotics software consists of concurrent communicating
processes, each of which executes dynamic controllers (called mo-
tion or action primitives). Motion primitives sense and actuate
continuous physical processes, which may be coupled, so the exe-
cution of one primitive affects the physical state of a concurrently
executing primitive. Further, since the robotic components reside
in 3D space, the software must ensure that the range of motions
executed concurrently by the motion primitives are compatible
with the geometry of the components and there are no collisions.

As a example, consider a robotic assembly consisting of a mobile
cart with an arm attached to it, as depicted in Figure 1. We illustrate
the difficulty of the robotics programmer on this example, for a task
Fetch which requires the system to fetch an object. We assume both
the cart and the arm comes with a set of capabilities: the cart can
move between locations and the arm can grab objects in its vicinity.
The capabilities are provided as motion primitives: abstractions of
underlying dynamic controllers. For example, the motion primitive
“move” could be implemented as a controller that plans a path and
executes the plan by sensing the state and actuating the motor, and
“grab” may be implemented as a complex controller that plans a
trajectory to grab and lift an object. However, implementing and
verifying a task as simple as Fetch is complicated for the following
reasons.

First, the controllers of the components are dynamically coupled;
for example, the movement of the cart depends on the weight and
center of mass of the arm: a small, light arm may allow a fast
motion planner compared to a heavy or dangly arm. Second, both
the arm and the cart live in 3D space, and this influences their range
of actions. For example, whether the cart can navigate through a
passage may depend on the state of the arm: an extended arm
can collide with an obstacle and invalidate a path that the cart,
by itself, could traverse. Conversely, the range of motion of the
arm is restricted by the base of the cart it is attached to. Third, the
motion primitives of the cart and the arm refer to coordinates in
their local frame: when the cart moves, the arm moves along and

https://doi.org/10.1145/3302509.3311052
https://doi.org/10.1145/3302509.3311052

ICCPS ’19, April 16–18, 2019, Montreal, QC, Canada G. B. Banus̆ić, R. Majumdar, M. Pirron, A. Schmuck, and D. Zufferey

any communication of the geometric space between the cart and
the arm must transform the information between the coordinate
systems. Fourth, a natural approach to decompose Fetch is for the
cart to move close to the target while the arm remains folded, then
the arm to grab the object, and finally the cart to move back. This
requires synchronization between the code running on the cart and
on the arm, to signal which step is currently executed and what
each process guarantees the other, and inherits all the complexities
of concurrent programming.

The robotics application developer today is left to navigate these
complexities by themselves. Programs are developed in imperative
languages such as C++ or Python or low-level robotics languages
provided by robot manufacturers, such as Rapid from ABB or KRL
from Kuka. While there is support for messaging (e.g., the robot
operating system (ROS) [23]), there are no existing programming
models or tools to simultaneously reason about the interaction
between concurrency, geometry, and dynamics.

Contributions. In this paper, we develop PGCD, a concurrent pro-
gramming model which combines Geometric constraint reasoning
of the robotic components with message passing Concurrency and
motion primitives for Dynamics. A program in our model consists
of a set of processes —each process represents a logical portion of a
robotic assembly (“cart” or “arm”). Processes run sequential code
and send or receive messages as well as execute a set of motion
primitives on the underlying physical state. A program is struc-
turally determined by assembling processes through attachments:
an attachment couples the physical state of two components and
also determines the relative coordinate transformations between
their geometries. For instance, for the Fetch example, there is a pro-
cess for the cart and a process for the arm. The program is obtained
by attaching the arm process to the cart process. The semantics of
PGCD programs define a transition system in which communica-
tion occurs in logical “zero time” and motion primitives execute
in real time. The semantics include geometric transformations be-
tween processes. Thus, the content of messages between the cart
and the arm processes is transformed to the recipient’s coordinate
system.

Second, we develop a verifier for PGCD programs. The verifier
takes as input a collection of robotic components, a PGCD program,
a specification of the motion primitives, and a description of the
environment. The specification of a motion primitive contains both
constraints over a robot’s state and its footprint, i.e., the region
of space used by the robot when executing that motion primitive.
The verification process has two steps. First, we check correctness
of communication and synchronization, such as the absence of
deadlock. Second, we ensure concurrent executability of motion
primitives through assume-guarantee reasoning and separation of
geometric resources. The separation of geometric resources checks
the important invariant that different components do not collide:
they always reside in disjoint parts of 3D space. The programmer
writes constraints and footprints of each process in its local frame;
the run time and the verification engine automatically performs
frame shifts.

We have implemented our language and analysis in Python and
provide a runtime system to execute our programs on top of ROS.
We have used our implementation to verify implementations of

Effector's
positionArm's

origin

Cart's origin
(world frame)Cart's position

Figure 1: (a) Schematic and (b) actual cart and arm

actual multi-robot co-ordinations. Further, the verified programs ex-
ecute on real robotic hardware (see Figure 1). Our evaluation shows
that our framework for programming of multi-robot co-ordination
and manipulation can lead to statically verified implementations
that run on off-the-shelf and custom-built robotics hardware plat-
forms.

Together, our programming model, runtime system, and veri-
fier lay the foundation for correct design and static verification of
complex robotic applications interacting dynamically in geometric
space.

Related Work. Many computational approaches have been devel-
oped for concurrent and real-time communication and computation,
but few cover the combination of communication, complex geome-
try, and dynamic control of physical state. Modeling paradigms for
hybrid systems such as hybrid automata and its extensions [1, 2, 20]
allow expressive dynamics, but little support for compositional pro-
gramming and reasoning about communication. Timed extensions
to process algebras, Petri nets, or other concurrency models al-
low the mixing of message passing and time, but do not combine
geometric reasoning and resource accounting. For the most part,
analysis algorithms for these models are intractable. In principle,
logics such as differential dynamic logic [22] and hybrid process
algebras [3, 5, 16, 25] enable reasoning about arbitrarily complex
concurrent and hybrid programs. However, the primary goal of
these systems is interactive verification of models.

Cardelli and Gardner [6] define a process algebra for geometric
interaction. Their formalism combines communication and frame
shifting, however, they do not consider dynamic flows of geometric
objects over time, which is crucial in a robotics context. Moreover,
the objective in their process algebra is an abstraction theorem,
and not reasoning about programs. Spatial logics have also been
explored from a topological perspective [7] where the modal op-
erators describe neighborhood relations. Such a framework can
express and check properties about arrangements, but cannot deal
with temporal evolutions.

From the perspective of DSLs for distributed robotic systems,
recent projects like StarL [18], Drona [8], and Koord [12] integrate
a DSL, specification, and verification support in the same frame-
work. StarL programs are composed of coordination and motion
primitives which have been specified in an interactive theorem
prover which can be used to verify the programs. Drona is built
on top of a state-machine based programming language, integrates

PGCD: Robot Programming and Verification
with Geometry, Concurrency, and Dynamics ICCPS ’19, April 16–18, 2019, Montreal, QC, Canada

a motion planner, and uses a model-checker to test the programs.
Koord is event based where events trigger global actions which per-
form computations and call motion primitives for different robots.
The verification uses a bounded model checker or user provided
inductive invariants. None of these systems integrate programming
and reasoning with concurrency, dynamics, and geometry.

2 PRELIMINARIES
2.1 Space and Frames
We work with robotic components embedded in 3D Euclidean vec-
tor space R3. Positions are points in R3, displacements are vectors
in R3, addition + is component-wise, scalar multiplication · with
a scalar from R is component-wise, and norm is defined as usual.
While points and vectors are both syntactically represented as three
real values, for technical reasons, we distinguish the sorts points
and vectors. While we assume the distinction is clear from the con-
text, when necessary, we write V (R3) for the set of vectors in R3,
which is an isomorphic copy of R3. We follow the convention of
calling x , y, and z the 1st, 2nd, and 3rd components of a vector.

A frameA is an orthonormal basis inV (R3). We call ux , uy , and
uz the 1st, 2nd, and 3rd unit vectors defining a frame.

We consider transformations between frames which are rigid
motions, i.e., transformations preserving distances, angles, and ori-
entation. The set of rigid motions forms the special Euclidean group
SE(3) and the set of 3D rotations gives the subgroup SO(3). A rigid
motionM ∈ SE(3) can be decomposed in a rotation R ∈ SO(3) and
a translation r ∈ V (R3): applying M to a point p ∈ R3 gives the
point Rp + r ; applyingM to a vector v ∈ V (R3) gives the vector Rv ,
since vectors are invariant under translation.

It is well known that elements of SO(3) can be represented by
3 × 3 orthogonal matrices, elements of SE(3) can be represented by
4×4 matrices [17], and the group operation is matrix multiplication.
Thus we identify SE(3) with the set{[

R r
01×3 1

]
∈ R4×4

����R ∈ R3×3 ∧ r ∈ R3 ∧ RT R = RRT = I ∧ |R | = 1
}
.

We write I for the 4 × 4 identity matrix. To use this representation,
we extend a point p = (x,y, z)T ∈ R3 to (x,y, z, 1)T and a vector
v = (a,b, c)T ∈ V (R3) to (a,b, c, 0)T .

In what follows, we fix a world frameW. Intuitively, the world
frame is a coordinate system that remains fixed and to which every
other coordinate system can be related.

2.2 Motion Primitives
Let X and W be two sets of real-valued variables, representing
internal state and external input variables of a dynamical system,
respectively. We write [[X]] and [[W]] for the set of (real-valued)
valuations to all the variables in X andW .

When applying a controller to a dynamical system, the values
of the variables in X are updated over time, while respecting the
values of variables inW , set by the external world. This dynamic
process results in a pair of state and input trajectories (ξ ,ν), i.e., a
valuation over time to variables in X andW s.t. ξ fulfills a desired
property.

We capture the effect of executing a controller on the dynamical
system for T time steps by a motion primitive m : (Pre, Inv, Post)
which consists of a pre-condition Pre ⊆ [[X]] × [[W]] which gives

conditions under which the motion primitive can be applied, an
invariant Inv ⊆ ([0,T] → [[X]]) × ([0,T] → [[W]]) which gives the
invariants that hold for the resulting motion, and a post-condition
Post ⊆ [[X]] × [[W]] which gives the possible states at the end of
the motion. A valid trajectory of duration T of a motion primitive
m is a pair of (measurable essentially bounded) functions (ξ ,ν)
mapping the real interval [0,T] to [[X]] and [[W]], respectively, such
that (ξ ,ν) ∈ Inv, (ξ (0),ν (0)) ∈ Pre, and (ξ (T),ν (T)) ∈ Post. We
shall represent Pre and Post syntactically as a first-order formula
over X ∪W , and Inv as a first-order formula over X ∪W ∪ {t},
where t denotes the time variable.

Example 2.1. Consider a cart moving on a 2D plane. The physical
state of the cart is its geometric center pcart ∈ R3 and orientation
rcart ∈ SO(3) in the world frame and its speed scart ∈ R. It has an
external variablemobj, which denotes the mass of the object it is
carrying. A trivial motion primitive idle(p0, r0) keeps the cart at its
current position p0 and orientation r0; the pre-condition is scart = 0
(i.e., it is at rest), the post-condition is scart = 0∧pcart = p0∧rcart =
r0, and the invariant is pcart(t) = p0∧rcart(t) = r0 for all t ∈ [0,T]. A
slightlymore interestingmotion primitive is forward(p0, r0), which
moves the cart in the direction of its orientation for one unit. The
pre-condition is scart = 0 ∧ pcart = p0 ∧ rcart = r0 ∧mobj ≤ mmax ,
giving an upper bound on the carried mass for motion to be possible.
The post-condition is scart = 0∧pcart = p0+rcartux ∧rcart = r0. The
invariant can specify a bound on the velocity, e.g., 0 ≤ scart ≤ vmax.
The motion primitive abstracts from the underlying dynamics of
the cart (which would depend onmobj and the dynamic controller
which determines the force applied to the motors to move the
cart). □

3 PGCD PROGRAMS
We introduce PGCD, a concurrent programming model for cyber-
physical components embedded in 3-dimensional geometric space.
A PGCD program is a set of concurrently executing processes. Each
process “controls” a set of physical variables by executing motion
primitives on them, but additionally communicates and synchro-
nizes with other processes. The dynamics of the physical variables
are coupled. The program structure reflects this coupling, i.e., the
composition of processes reflects the couplings and frame shifts
between physical variables of their underlying dynamics. Thus, con-
current processes can execute in different reference frames relative
to each other; e.g., an arm attached to a cart describes its motion in
its local frame, but its local frame can move relative to the world
frame if the cart moves.

3.1 Syntax
Processes. We consider a fixed finite set C of processes. Each

process P ∈ C is a tuple (Var,M, S, ρ, rsrc) where Var is a set of
variables, with two distinguished disjoint subsets X andW of phys-
ical state and external input variables,M is a set of motion prim-
itives, ρ : Var → [[Var]] is a store mapping variables to values,
rsrc : ρ → 2R

3
is a resource function, and S is a statement generated

by the grammar:

S ::= x := expr | m | send(a, l, expr) | receive(m){(l, x, S)+}

| S ; S | if expr then S else S | skip | while expr do S

ICCPS ’19, April 16–18, 2019, Montreal, QC, Canada G. B. Banus̆ić, R. Majumdar, M. Pirron, A. Schmuck, and D. Zufferey

where a ∈ C is a (different) component, m ∈ M is a motion primi-
tive, x ∈ Var ranges over variables, l is a label from a fixed finite
set of labels, and expr comes from an (unspecified) effectively com-
putable language of arithmetic expressions. For the sake of simplic-
ity, we omit types for variables and assume well-typed processes
and motion primitives.

A process represents a unit of a program which controls a contin-
uous physical system through the application of motion primitives
and, additionally, communicates with other concurrently executing
processes. The store ρ gives values to the local process variables
Var; this includes valuations to the physical state variables. The
resource function gives an upper bound on the geometric space
used by a process. Part of the statements form a core imperative
programming language, with skip, assignments, sequential compo-
sition, conditionals, and loops. In addition, a process can execute
motion primitives and send and receive labeled messages for syn-
chronization. The message labels come from a finite set known to
all processes. As shorthand, we often write labeled messages as
l(v) where l is the label and v a value. When the message does not
carry a value, we simply write l . Receiving messages operates on
a list of triples of the form (l, x, S) where l is a label, x is a name
to which the received value is assigned, and S is the continuation.
Since receive is a blocking operation it also takes as argument a
motion primitive which is executed while the process waits for a
message. We consider messages with a single payload value, but
this can be generalized to tuples.

The resource function rsrc takes as input the state of the process
and returns an over-approximation of the space used by the robot
(a subset of R3).

Example 3.1. Consider the cart from Example 2.1. A process cor-
responding to the cart would “wrap” the motion primitives and addi-
tionally implement a control programwhich determines when to ap-
ply the motion primitives. The set Var = {pcart, rcart, scart}∪{mobj}
gives the physical state and external input variables, respectively.
The program

receive(idle(ρ(pcart), ρ(rcart))){(step, _, forward(ρ(pcart), ρ(rcart)))}

specifies that the cart remains idle at its current position ρ(x) until
it receives a step message (without other values), and then steps
one unit using the motion primitive forward.

Let dl , dw , dh be bounds on the cart’s length, width, and height,
s.t. their center point coincides with the cart’s center. The resource
function rsrc gives a bounding box around the cart’s position:p′ ∈ R3

������
− dl /2 ≤ (p′ − pcart) · (rcartux) ≤ dl /2
∧ − dw /2 ≤ (p′ − pcart) · (rcartuy) ≤ dw /2
∧0 ≤ (p′ − pcart) · (rcartuz) ≤ dh

 (1)

We write the resource in this style, rather than the more obvious
predicate {x | |x1−pcart.x | ≤ dl

2 , |x2−pcart.y | ≤
dw
2 , |x3−pcart.z | ≤

dh
2 } to make frame reasoning about resources easier; in (1), vectors
are defined as abstract elements and we can directly transform them
across frame shifts. □

Attached Composition. Consider two processes P1 and P2 with
disjoint sets of variables. The simplest way to compose P1 and P2 is
to “connect” some physical variables of one with external variables
of the other and vice versa. This couples the motion primitives of
the two processes.

A connection θ between P1 and P2 is a finite set of pairs of vari-
ables, θ = {(xi ,wi) | i = 1, . . . ,m}, such that: (1) for each (x,w) ∈ θ ,
we have x ∈ P1.X and w ∈ P2.W or x ∈ P2.X and w ∈ P1.W , and
(2) there does not exist (x,w), (x ′,w) ∈ θ such that x and x ′ are
distinct. Two connections θ1 and θ2 are compatible if θ1 ∪ θ2 is a
connection. Given a connection θ , we write θ (x) = {w | (x,w) ∈ θ }
and rng(θ) = {w | ∃x .(x,w) ∈ θ }. Note that in a connection, a
physical state variable of a process may be connected to several ex-
ternal variables, but each external variable of a process is connected
to at most one state variable.

A connection couples the variables of two processes, but they
may be interpreted in different frames. Thus, a connection between
the components may require a frame shift when communicating
geometric objects. This is the motivation for attached compositions,
defined next.

Let θ be a connection between P1 and P2 and letM be a term over
the variables of P1. We assumeM evaluates to a frame transformer
in SE(3). We define the attached composition operation P1 ◁θ ,M P2
which connects variables through a connection θ and applies a
frame shift M for any communication of geometric objects (points
or vectors) from P2 to P1 and a reverse shift P1.ρ(M−1) for any
communication from P1 to P2. The semantic rules in the next section
will apply this frame shift automatically.

A connection introduces the following constraint on stores:
P1.ρ(w) = P1.ρ(M)(P2.ρ(y)) whenever (y,w) ∈ θ with y ∈ P2.X
andw ∈ P1.W and P2.ρ(w) = P1.ρ(M−1)(P1.ρ(y))whenever (y,w) ∈
θ with y ∈ P1.X andw ∈ P2.W . That is, the variables in P1.W con-
nected to those in P2.X are “set” by the corresponding values in
P2’s store after the frame shift, and vice versa.

Let P1, P2, and P3 be processes. Let θ12 be a connection between
P1 and P2 and θ13 a connection between P1 and P3. Let M12 and
M13 be relative frame shifts between P1 and P2 and P1 and P3,
respectively. The operation P1◁θ ,M P2 is considered left associative;
we write P1 ◁θ12,M12 P2 ◁θ13,M13 P3 for (P1 ◁θ12,M12 P2) ◁θ13,M13 P3.
In this expression, both P2 and P3 are children of P1. Therefore, we
have

(P1 ◁θ12,M12 P2) ◁θ13,M13 P3 = (P1 ◁θ13,M13 P3) ◁θ12,M12 P2.

However, contrary to the “usual” parallel composition of processes,
attached composition is not commutative. The frame of P1 ◁θ ,M P2
is the frame of P1. Swapping P1 and P2 would change that unless
M = I . Hence, we only have a restricted form of commutativity, i.e.

P1 ◁θ ,I P2 = P2 ◁θ ,I P1.

Example 3.2. We consider a second process, an arm which is
mounted on the cart. The cart’s variables are the three angles α, β,γ
of the joints between each of its parts andmarm which represent the
overall mass of the arm (motion platform, gripper, carried object).
The frame of the arm is the center of its base as shown in Figure 1(a).
We model this using the attached composition operation C ◁θ ,M A

withM =
[rcart pcart
01×3 1

]
which shifts the frame according to the cart’s

position and heading. θ = {(marm,mobj)} connects the arm’s mass
to the cart’s payload. □

Programs. A (concurrent) program Π connects processes using
the attached composition operator:

Π ::= P | Π ◁θ ,M Π (2)

PGCD: Robot Programming and Verification
with Geometry, Concurrency, and Dynamics ICCPS ’19, April 16–18, 2019, Montreal, QC, Canada

Algorithm 1: Cart
1 send(arm, fold);
2 receive (idle)
3 folded ⇒ skip
4 while (|target − p | > reach) do
5 moveToward(target)
6 send(arm, grab(target));
7 receive (idle)
8 grabbed ⇒ skip
9 send(arm, fold);

10 receive (idle)
11 folded ⇒ skip
12 while (p < homeRegion) do
13 moveToward(homeRegion);
14 send(arm, done);

Algorithm 2: Arm
1 while true do
2 receive (idle)
3 fold ⇒
4 move(or iдin);
5 send(cart, folded)
6 grab(loc)⇒
7 grab(loc);
8 send(cart,

grabbed)
9 done⇒
10 break

Figure 2: Pseudocode for cart and arm

where θ is a connection, andM is a term representing a frame trans-
former. Since attached composition is left associative, a program
arranges processes in a tree structure which induces a parent-child
relationship between processes.

For simplicity of notation, we assume there is a virtual processV
defined as (_, ∅,CV , {idle},while(true)idle)withCV = (∅, ∅, ∅, _→
∅, _ → ∅). This allows us to represent two components P and P ′

which are not “physically attached” together by attaching both of
them toV , i.e., V ◁∅,M P ◁∅,M ′ P

′.V may also be used to model
features of the environment, e.g., attaching obstacles to it.

Example 3.3. Mounting an arm on the cart enables completion
of more complex tasks that neither component could achieve alone.
We now want to write a concurrent program that controls the arm
and the cart such that an object at a remote location is fetched.
Algorithms 1 and 2 show two pieces of code to highlight the com-
munication between them. We omit additional details of the compu-
tation for simplicity. For readability, we use some syntactic sugar;
these programs can be easily compiled into our core grammar for
statements. □

3.2 Semantics
Intuitively, the execution of PGCD programs happen in rounds.
Each round has two sub-rounds. In the first subround, components
exchange messages in logical zero time. In the second, each com-
ponent executes a motion primitive for a time period of duration
T . The real time execution of motion primitives synchronizes all
components.

Formally, we define the semantics of our programming model as
labeled transition rules between program states. A program state
consists of a program Π and the stores of each process in Π. Given
a store ρ of a process and a variable x ∈ Var of that process, we
write ρ(x) for the value of variable x and lift this to expressions:
ρ(e) is the evaluation of e in environment ρ. We write ρ(x) ← v
for the store which maps variable x to v but agrees with ρ on all
other variables.

The transitions −→ are of the form:
•

τ
−→: an internal step to a process.

•
p!l (v)
−−−−−→: sending label l with value v to component p.

•
p?l (v)
−−−−−→: p receiving a message with label l and value v .

•
ξ ,ν ,T
−−−−−→: the system follows the output trajectory ξ , with ex-
ternal inputs ν for the duration T .

Contexts. We define the semantics in a contextual style. A state-
ment context Σ extracts the next statement to be executed in a
sequence “Σ ::= [] | Σ; S” and Σ[S] is obtained by replacing [] by a
statement S in Σ.

The semantic rules given below use some auxiliary functions and
predicates. The leftH functions returns the output of the leftmost
process in a program. It is recursively computed with (i) leftH (P) =
P .ρ, (ii) leftH (Π ◁θ ,M Π′) = leftH (Π). We use leftH for the frame
shift in a composition which is a function of the output of the left-
most process. For example, we write leftH (Π1 ◁θ ,M Π2)(M) for the
transformation in SE(3) obtained by evaluating the term M in the
store of the leftmost process in the program. disjoint(P,Q), with
P◁θ ,MQ , is a shorthand for P .rsrc(P .ρ)∩leftH (P)(M)(Q .rsrc(Q .ρ)) =
∅. This predicate checks that the footprint of the left and right com-
ponents is disjoint. Anytime the state of a process can change,
disjointness needs to be preserved.

Transitions. The main transition rules are presented in Figures 3
and 4. Figure 3 shows transitions relating to inter-process commu-
nication. Inter-process communication happens by rendezvous on
a shared channel: a sender process sends a value v on a channel a
and simultaneously a receiver process receives the value, shifted to
its own frame, and continues executing. The semantics take care of
the frame shift of value v from the sender to the receiver. This ap-
proach of implicitly taking care of the frame shift is used in existing
systems like the tf2 library [10].

The (CommSend) and (CommRecv) rules describe how processes
send and receivemessages.When sending amessage, the expression
e is evaluated to a value v in the store of P (ρ(e) ⇓ v). Sending does
not change the local state, it only consumes the send instruction.
Receiving a message binds the value v carried by the message to
the receiving variable x in the store (ρ(x) ← v) and continues with
the appropriate statement S determined by the label.

The rules (CompL) and (CompR) “propagate” communication and
silent steps: if a component of a propagate can make a transition
labeled a, then the entire program can also make a transition la-
beled a. When propagating the transition, the store is updated to
reflect the frame and connections. If the transition carries a message
from the right side of the composition, the value in the message is
shifted to match the overall frame inherited from the left process
(leftH (P)(M)(v) ⇓ v ′). Furthermore, the transition may update the
local state which changes the resources used by the processes. So
we also check that the two components are disjoint.

The (CommSyncLR) and (CommSyncRL) rules match the send
and receive statements. The structure is similar to the (CompL) and
(CompR) rules with both sides changing. Once the send and receive
are matched the label of the action is not propagated further and the
action becomes an internal action (τ) of the composed processes.

Figure 4 shows how the motion primitives execute. The tran-
sitions are labeled with the trajectory (ξ) of the local states, the
external inputs (ν), and the total time of the transition (T). The

ICCPS ’19, April 16–18, 2019, Montreal, QC, Canada G. B. Banus̆ić, R. Majumdar, M. Pirron, A. Schmuck, and D. Zufferey

(CommSend)
ρ(e) ⇓ v

(Var,M, Σ[send(a, l , e)], ρ , ·)
a!l (v)
−−−−−→ (Var,M, Σ[skip], ρ , ·)

(CommRecv)
ρ′ = ρ(x) ← v

(Var,M, Σ[receive(m){. . . (l , x , S) . . . }, ρ , ·)
P?l (v)
−−−−−−→ (Var,M, Σ[S], ρ′, ·)

(CompL)
P

α
−→ P ′ disjoint(P ′,Q)

P ◁θ ,M Q
α
−→ P ′ ◁θ ,M Q

(CompR)
Q

α
−→ Q ′ disjoint(P ,Q ′)

α = α ′ = τ ∨ (α = a#l (v) ∧ leftH (P)(M)(v) ⇓ v ′ ∧ α ′ = a#l (v ′) ∧ # ∈ {!, ?})

P ◁θ ,M Q
α ′
−−→ P ◁θ ,M Q ′

(CommSyncLR)

P
a!v
−−−→ P ′ Q

a?v ′
−−−−→ Q ′ leftH (P)(M−1)(v) ⇓ v ′ disjoint(P ′,Q ′)

P ◁θ ,M Q
τ
−→ P ′ ◁θ ,M Q ′

(CommSyncRL)

Q
a!v
−−−→ Q ′ P

a?v ′
−−−−→ P ′ leftH (P)(M)(v) ⇓ v ′ disjoint(P ′,Q ′)

P ◁θ ,M Q
τ
−→ P ′ ◁θ ,M Q ′

Figure 3: Reduction rules for communication

(Motion) rule checks the conditions of the motion primitives and
makes sure the store matches the initial state and the final states
of the trajectory. The (Time) rule puts together trajectories of pro-
cesses. The trajectory of one process is projected to become part of
the disturbances of the other process. More precisely, νP gets the
external inputs projected on P (ν |P) along the output of Q through
the connection (θ (ξQ)) to which we apply the frame shift (ξ (M−1)).
Finally, we also check that the resources used by the two processes
stay disjoint during the execution of the motion primitives.

Finally, Figure 5 shows the semantics of the internal control flow
of the processes. These are the standard rules for an imperative
programming language. All these transitions are silent and follow
the expected semantics of an imperative programming language.

At the root of the ◁θ ,M tree, only
τ
−→ and

ξ ,ν ,T
−−−−−→ are allowed.

Messages send and reception must be matched inside the system
(closed world hypothesis). Once the send and receive are matched
the label becomes τ .

4 VERIFICATION
A PGCD program can “get stuck” during execution in different
ways. First, the message passing can deadlock because send opera-
tions are blocking. Second, a process may try executing a motion
primitive when its precondition does not hold. Third, two processes
may execute motion primitives concurrently but their resources
may intersect. In this section, we describe a verification algorithm
for PGCD programs.

The key idea is that the programming model allows the verifica-
tion problem to be separated into logical zero-time message-passing
periods and real-time periods when time elapses following the tra-
jectories defined by motion primitives. Our verification algorithm
uses a combination of model-checking and constraint-solving. The
model-checker checks the correctness of message communication
between processes. A numerical solver for non-linear constraints
over the reals checks the correctness of motion primitives.

Communication safety. For the messages, we want to show that
the communication between components is well-formed. In par-
ticular, we verify that the program does not get into a state where
some process is forever blocked on a send operation and that there
is no unbounded execution solely with message passing (making
time “stop”).

Our verification algorithm converts a program into concurrently
executing control flow automata (CFA) [13]. The code of each CFA
is abstracted and we keep only send, receive, and motion primitives.
Local computation is abstracted and internal choices (if then else)
becomes non-deterministic. Then, for each CFA, we check there is
no loop (cycles in the CFA) without any motion primitive. This is a
sufficient check to prevent potentially infinite “0-time” computa-
tion.

We take the synchronized product of all the CFAs. Matching send
and receive statements in two processes synchronize based on la-
bels. Motion primitives are considered to synchronize all processes
globally in real time. Moreover, for receive statements, a motion
primitive only executes when no more communication is possible.
Finally, we check for deadlock, i.e., a non final state without succes-
sor, by exploring the state space of the synchronized product using
a model checker. Rather than building the product explicitly, in our
implementation, we encode the CFAs as Promela processes and
perform the exploration using the Spin model checker [14]. Notice
that due to the construction above there is only a single final state
where all the processes have finished. Therefore, the deadlock check
makes sure that either processes are communicating, executing a
motion primitive, or terminated.

Furthermore, during the state space exploration, we also extract
the combination of motion primitives that are executed concur-
rently. We use them in the second part of the verification process.

Trajectories and footprints. Using the combination of motion
primitives recorded during model checking, we now check that the
abstract motion primitives can execute correctly. This requires two
checks. First, for motion primitives of different processes executed
concurrently, we need to make sure that a trajectory satisfying
the rules for motion (Figure 4) exist. Second, for motion primitives
executed sequentially by the same process, we need to make sure
that the post-condition of the first motion primitive implies the pre-
condition of the following one. Currently we rely on the user giving
state invariants in the form of program annotations to help with the
verification process. These annotations associate predicates with
program locations.

To check that motion primitives executing concurrently have
a joint trajectory, we use an assume-guarantee style of reasoning.

PGCD: Robot Programming and Verification
with Geometry, Concurrency, and Dynamics ICCPS ’19, April 16–18, 2019, Montreal, QC, Canada

(Motion)
∨

{
S=Σ[m] ∧ S ′=Σ[skip]
S=Σ[receive(m){. . .}] ∧ S ′=S

ξ (0) = ρ |X ρ′ = ρ |Var ∪ ξ (T)
m.Pre(ξ (0), ν (0)) m.Post((ξ (T), ν (T)))

∀t ∈ [0,T].m.Inv((ξ (t), ν (t)))

(Var,M, S , ρ , rsrc)
ξ ,ν ,T
−−−−−→ (Var,M, S ′, ρ′, rsrc)

(Time)

P
ξP ,νP ,T
−−−−−−−−→ P ′ νP = ν |P ∪ ξ (M)(θ (ξQ))

Q
ξQ ,νQ ,T
−−−−−−−−→ Q ′ νQ = ν |Q ∪ ξ (M−1)(θ (ξP))

ξ = (ξP ∪ ξP (M)(ξQ)) ∀t ∈ [0,T]. P .rsrc(ξP (t)) ∩ ξP (t)(M)(Q .rsrc(ξQ (t))) = ∅

P ◁θ ,M Q
ξ ,ν ,T
−−−−−→ P ′ ◁θ ,M Q ′

Figure 4: Reduction rules for motion

(Seq)

(Var,M, Σ[skip; S], ρ , rsrc)
τ
−→ (Var,M, Σ[S], ρ , rsrc)

(Assign)
ρ(e) ⇓ v ρ′ = ρ(x) ← v

(Var,M, Σ[x := e], ρ , rsrc)
τ
−→ (Var,M, Σ[skip], ρ′, rsrc)

(WhileT)
ρ(e) ⇓ true

(Var,M, Σ[while e do S], ρ , rsrc)
τ
−→ (Var,M, Σ[S ;while e do S], ρ , rsrc)

(WhileF)
ρ(e) ⇓ false

(Var,M, Σ[while e do S], ρ , rsrc)
τ
−→ (Var,M, Σ[skip], ρ , rsrc)

(IteT)
ρ(e) ⇓ true

(Var,M, Σ[if e then S else S ′], ρ , rsrc)
τ
−→ (Var,M, Σ[S], ρ , rsrc)

(IteF)
ρ(e) ⇓ false

(Var,M, Σ[if e then S else S ′], ρ , rsrc)
τ
−→ (Var,M, Σ[S ′], ρ , rsrc)

Figure 5: Reduction rules for control flow.

When two processes are attached, one process relies on the invari-
ants of the other’s output (which can be an external input) to satisfy
its own invariant and vice versa.

The first step is to extract the assumptions and guarantees from
the predicates. A predicate P of process P , e.g., the invariant of a
motion primitive, is projected on to P ’s external inputs to get the
assumption and on P ’s physical state variables to get the guarantee.
That is, AP ⇔ (∃x ∈ P .X . P) and GP ⇔ (∀w ∈ P .W . P).

For assume-guarantee reasoning, we follow the method pre-
sented by Nuzzo [21]. Given a program Π and an invariant IP for
each process P , we first traverse Π starting from the leaves to gen-
erate assume/guarantee contracts for each attached composition.
Each P ◁θ ,M Q gets a contract based on the contract of their chil-
dren:

• A⇔ (AP ∨M (AQ) ∨ ¬(GP ∧M (GQ))) ∧ ∀(x , y) ∈ θ . x = y
• G ⇔ GP ∧M (GQ) ∧ ∀(x , y) ∈ θ . x = y

These rules are the composition rules from [21, Section 2.3.2] to
which we have added the frame shifts. At each step of this process
we need to check that the composed contracts are well-formed by
checking:
• compatibility: A is satisfiable,
• consistency: G is satisfiable, and
• spatial separation: G ⇒ P .rsrc ∩M(Q .rsrc) = ∅ is valid.

The spatial separation check is new in our system and states that
under the guarantees provided by both P and Q , their respective
resources must be disjoint. Furthermore, when the root of Π is
reached, the finalAmust be implied by the environment assumption
and the final G is the overall behavior of the system.

Specifications and Annotations. The verifier for PGCD is not fully
automatic; to help the verifier, the programmer needs to provide
some annotations. As mentioned earlier, a motion primitive m is
specified by (Pre, Inv, Post). Further, a resource function for a robot
with a complicated geometry can be complex; for example, for a

robotic arm, it can be the geometry of the arm itself. In practice,
the check for spatial separation uses programmer-specified abstract
footprint predicates which over-approximate P .rsrc and Q .rsrc but
for which the separation check is efficient.

For instance, in the grabmotion primitive of an arm, we can over-
approximate the arm’s working envelope (which can be a complex
and non-convex set) by a half sphere around its base with a radius
corresponding to the arm’s maximal extension. This formula is
simpler than the arm’s resource function as it does not depend
on the arm’s state but may be sufficient to handle some scenarios.
With the extra footprint specification, it becomes possible to divide
the collision check in two parts: (1) we check that each component
stays within the footprint of its motion primitive and (2) we check
that the footprint of concurrently executing motion primitives do
not intersect.

The second type of user annotations are invariants given as
constraints over the system’s state at particular program locations.
For instance, in Algorithms 1 and 2 when the cart is a line 6 and
the arm at line 2, we have |target −C .p | ≤ target ∧A.γ = 0∧A.β =
minLowerAngle ∧ A.α = maxUpperAngle. This is the conjunction
of the exiting the loop (Algorithms 1 line 4) and the arm in a folded
state. These invariants have a role similar to loop invariants and
allow us to decompose the reasoning into a finite number of checks.

5 IMPLEMENTATION AND EVALUATION
5.1 Implementation
We have implemented PGCD and analyses as an interpreter, li-
brary, runtime system, and verifier in Python. The code is publicly
available at https://github.com/MPI-SWS/pgcd. To run a program,
each robot runs a copy of the interpreter and the runtime. Each
copy of the interpreter runs the processes on actual robot hardware,
directly interacting with the hardware and communicating through

https://github.com/MPI-SWS/pgcd

ICCPS ’19, April 16–18, 2019, Montreal, QC, Canada G. B. Banus̆ić, R. Majumdar, M. Pirron, A. Schmuck, and D. Zufferey

the runtime system. The runtime system manages the messages
using an additional server acting as a central broker that keeps
up-to-date frame shifts between the different robots.

The verifier takes as input a program (with invariant annotations)
and specifications for the motion primitives and the environment.
Then, it decomposes the program into a list of processes, their
connections, and respective specifications. Finally, it performs the
checks described in Section 4.

Runtime System. We use ROS for the message-passing layer [23].
ROS is a publish-subscribe system where processes advertise topics,
publish messages or subscribe on specific topics. Topics can be hi-
erarchically arranged in namespaces. A ROS master node manages
the topics.

In our runtime system, each process get a namespace based on
its identity, and the topics correspond to the labels of the messages.
While ROS implements asynchronous message-passing by default,
we implement a synchronous rendezvous communication on top
to faithfully model our semantics. When a process encounters a
receive statement, it subscribes to the topics corresponding to the
labels occurring in the receive block. After receiving a message,
it unsubscribes from the topics. This enables the sender to query
the ROS framework to check the presence of a receiver and to
block until a receiver is ready. Therefore, the send operation blocks,
accurately implementing our synchronous semantics.

The use of ROS lets us reuse a lot of robotics infrastructure avail-
able in the ROS ecosystem. We build on ROS’s tf2 library [10] to
deal with frame shifts. In our implementation, every component
periodically publishes its frame shift relative to their children. (Pe-
riodic updates of the frame shift are necessary as frame shifts are
dynamic, i.e., based on the current state.) The receive operation for
a process queries tf2 for the frame shift from the sender’s frame to
the frame of the recipient process and transforms the content of
the message appropriately.

Motion primitives are hardware specific and each motion primi-
tive is currently implemented directly for the corresponding robot.
The implementation of motion primitives interfaces with the hard-
ware (e.g., to motors) for individual robots.

Verifier. Our verifier is also implemented in Python. To check
the communication, we generate Promela models from the pro-
gram and analyze them with Spin [14]. For the geometric reasoning
we use SymPy, a symbolic manipulation package which contains
a module for 3D Cartesian coordinate systems.1 Using this mod-
ule, formulas are expressed in their component’s frame and frames
are constructed on top of their parent. When the frame shifts are
given, a formula can be automatically translated to a specific coor-
dinate system using symbolic manipulation in SymPy. As the frame
shift and motion primitives involve reasoning about non-linear
arithmetic, e.g., trigonometric functions arising from rotations, we
use the dReal solver [11] for non-linear theories over the real to
discharge the verification conditions.

Each motion primitive needs to have a specification in the form
of a (Pre, Inv, Post) triple. The specifications are written directly as
Python functions by extending the appropriate base classes pro-
vided by the tool. The specification of a motion primitive describes

1http://docs.sympy.org/latest/modules/vector/index.html

“frame conditions” by explicitly describing the variables modified
(using a modifies clause similar to ESC/Java [9]). Additionally, we
allow the programmer to separately specify footprints (regions
of space used by the motion primitive) for Pre, Inv, and Post. For
example, the resource function of an arm consists of a number of
cylinders with spherical joints, but the footprint can simply return
a half-sphere bounding the arm.

The verifier checks that the names of messages and motion prim-
itives coincide, and the values passed to the motion primitives
syntactically match those in the specification. Thus, correct pro-
grams, which may perform local computations to provide values
to the motion primitives, may be rejected. Verifying programs in
the presence of local computations would require implementing
a symbolic execution engine. The stronger syntactic check was
sufficient for our examples.

5.2 Experiments
We have implemented several examples involving multi-robot co-
ordination in our system. First, we describe our experimental setup,
both for the hardware and software. Then, we explain the experi-
ments. Finally, we report on the size of the programs, specifications,
and verification time. 2

Setup. We built a robotic arm and two carts, shown in Figure 1,
using a mix of off-the-self parts and customized 3D printed compo-
nents. The arm is based on the BCN3D MOVEO,3 where the upper
arm section is shortened to make it lighter and easier to mount. The
two carts are omnidirectional driving platforms. They have three
degrees of freedom (two in translation, one in rotation) when mov-
ing on a flat ground. The advantage of using such wheels is that all
the three degrees of freedom are controllable and movement does
not require complex planning. The smaller cart is battery powered
and the larger one has a tether due to the large power consumption
of the arm mounted on top.

The carts and the arm use stepper motors to precisely control
the motion. The carts do not have feedback on their position and
keep track of their state using dead reckoning, i.e., they know their
initial state and then they update their virtual state by counting the
number of steps the motors make. If we control slippage and do not
exceed the maximum torque of the motors, there is little accumu-
lation of error as long as the initial state is correct.4 Furthermore,
using stepper motors allows us to know the time it takes to execute
a given motion primitive by fixing the rate of steps.

Each robot has a RaspberryPi 3 model B running the process
and the runtime system. The ROS master node, providing the mes-
saging services, runs on a separate RaspberryPi to which all the
processes connect. The RaspberryPi runs Raspbian OS (based on
Debian Jessie) with ROS Kinetic Kame.

The carts each have five motion primitives, the arm has eight.
Motion primitives for the carts require 92 and 97 lines of code, the
arm has 154 lines, and there is an additional 151 lines of shared
code. The specification consists of 174 and 75 lines for the carts

2A short video of our experiments can be seen at https://owncloud.mpi-sws.org/index.
php/s/0olpAuC7nq6wKTJ/download?path=%2F&files=All%20Experiments.mp4.
3https://github.com/BCN3D/BCN3D-Moveo
4 In our experiments, we use markings on the ground to fix the initial state as can be
seen in Figure 6 and the video.

http://docs.sympy.org/latest/modules/vector/index.html
https://owncloud.mpi-sws.org/index.php/s/0olpAuC7nq6wKTJ/download?path=%2F&files=All%20Experiments.mp4
https://owncloud.mpi-sws.org/index.php/s/0olpAuC7nq6wKTJ/download?path=%2F&files=All%20Experiments.mp4
https://github.com/BCN3D/BCN3D-Moveo

PGCD: Robot Programming and Verification
with Geometry, Concurrency, and Dynamics ICCPS ’19, April 16–18, 2019, Montreal, QC, Canada

and 221 lines for the arm. In Table 1, we give an estimate of the
implementation and specification effort for motion primitives in
terms of lines of code (Loc). The two carts are on the same line as
they share much of the same specification. However, the implemen-
tation of the motion primitives differ due to the specific hardware
configurations of the two robots. The Shared line represents the
shared code base that interfaces with the hardware.

Experiments. We tested our tools on four experiments. In the
following, we call the smaller cart the (object) carrier.

Fetch. This is the running example.
Handover. This experiment is a variation of “fetch.” We added

an extra carrier cart which carries the object. The two carts meet
before the arm takes an object placed on top of the carrier and, then,
they go back to their initial position (see Figure 6b).

Twist and Turn. In this experiment, the carrier starts in front
of the cart. The arm takes an object from the carrier. Then all three
robots moves simultaneously. The cart rotates in place, the carrier
describe a curve around the cart, and arm move from on side of the
cart to the other side. At the end, the arm puts the object back on
the carrier. This can be seen in Figure 6c.

Underpass. In this experiment, the carrier cart brings an object
to the arm which is then taken by the arm. The carrier cart goes
around the arm passing under an obstacle which is high enough
for just the carrier but not with the object on top. Finally, the arm
puts the object back on the carrier on the other side of the obstacle.
This can be seen in Figure 6d.

Composite images (combination of multiple frame of the video)
are shown in Figure 6. The carts implement motion explicitly using
the motion primitives (move straight, strafe, rotate, sweep). For
instance, when going around the cart in the last experiment, the
carrier executes rotate, move straight, rotate, strafe. Because grip-
ping is a collision, we exclude the gripper from the arm’s footprint
and we do not model the objects we grip. For the environment, we
model obstacles as regions of R3 and also test for collision against
these regions.

Table 2 shows the size of the programs in the core language of
Section 3 (sum for all the robots) and the size of the specifications.
The program includes the statements for each process and the
connections between processes. As part of the program we include
the “world” description: the world is a virtual process which is
the root of the parent-child attached composition. Additionally, the
world contains obstacles used for additional collision checks. Finally,
we show the number of verification conditions (#VCs) generated
when checking the motion primitives and the total running time. In
all cases, the communication protocol are simple and are verified by
Spin in less than a second. Checking the motion primitives require
more complex reasoning and dominate the running time. The total
number of verification conditions is quite large as showing the
absence of collision is quadratic in the number of components.

Overall, the experiments show that PGCD is expressive enough
for complex coordination tasks and, at the same time, the verifier
can scale to statically verify concurrency and geometric properties
of these tasks.

6 LIMITATIONS AND FUTUREWORK
We now discuss some limitations of PGCD and potential future
directions.

To verify the coordination, we rely on model checking the global
system with all the components. While our current examples have
simple enough communication protocols and Spin can exhaustively
check that the communication protocol is well formed, this solution
is not completely satisfactory.

(1) To keep the state space small, we currently abstract details
of the computations and values inside the messages. This
leads to a loss of precision and imposes a higher annotation
burden.

(2) The model checking works on the global system and does
not take advantage of the structure of the composition. In
many practical cases, we expect the communication to fol-
low the physical structure of the system. For instance, the
composed cart and arm have internal communication for syn-
chronization but, from the outside, they behave like a single
entity. The cart and arm assembly responds to requests from
other processes while keeping their internal communication
hidden.

To improve these points, we are investigating the use of choreo-
graphic programming [19] and multiparty session types [4, 15].
These methods use global specification structured to be projectable
on the individual processes. Then, the verification only requires
local checks at the level of each process.

For motion primitives, most of the checks we perform are related
to the disjointness of footprints, i.e., that different components do
not collide. Currently, we encode these constraints in first order
logic. We plan to embed our programs into an expressive logic for
resources [24] to deal with these constraints more efficiently.

We are also exploring simultaneous concurrent programming
and distributed controller synthesis. As an example, assume that we
have two cart and arm compositions which should lift one object
together. Suppose that that lifting the object with only one arm
would cause the cart/arm composition to tilt over. Thus, there is a
strong coupling between all components during the coordinated
lift of the object. Our programming model is expressive enough
to capture the synchronization. However, a robust controller in
this setting would need (almost) continuous feedback between all
components to fulfill the coordinated lift task. Thus, our model of
loosely coupled motion primitives, one per component, would be
too weak.

7 CONCLUSION
We have presented a language and verification system for concur-
rent, communicating components interacting with the physical
world and embedded in geometric space. The semantics of the lan-
guage takes into account relative frames of reference among the
components and transforms geometric data in communication to
the appropriate frame.

Our evaluation demonstrates that our language and runtime
can specify, verify, and run non-trivial co-ordinations between
multiple robots in reasonable programming effort while providing
automated verification support.

ICCPS ’19, April 16–18, 2019, Montreal, QC, Canada G. B. Banus̆ić, R. Majumdar, M. Pirron, A. Schmuck, and D. Zufferey

Table 1: Motion Primitives Implementation and Specification

Robot Motion Primitives Implementation Specification
(LoC) (LoC)

Arm SetTurntable, SetLowerArm, SetUpperArm, SetPose, Grab, Grip, Fold, Idle 154 221
Cart (both) Move, Strafe, Rotate, Sweep, Idle 92 + 97 174 + 75
Shared – 151 –

(a) Fetch (b) Handover (c) Twist and Turn (d) Underpass

Figure 6: Composite images of the experiments.

Table 2: Programs, Annotations, and Checks

Experiment Program Annotations #VCs Time
(LoC) (LoC) (sec.)

Fetch 35 12 82 16
Handover 29 18 183 86
Twist and Turn 38 18 93 79
Underpass 52 40 393 103

ACKNOWLEDGMENTS
This research was funded in part by the Deutsche Forschungsge-
meinschaft project 389792660-TRR 248 and by the European Re-
search Council under the Grant Agreement 610150 (http://www.
impact-erc.eu/) (ERC Synergy Grant ImPACT).

REFERENCES
[1] Rajeev Alur, Radu Grosu, Insup Lee, and Oleg Sokolsky. 2006. Compositional

modeling and refinement for hierarchical hybrid systems. J. Log. Algebr. Program.
68, 1-2 (2006), 105–128.

[2] Rajeev Alur and Thomas A. Henzinger. 1997. Modularity for Timed and Hybrid
Systems. In CONCUR (LNCS), Vol. 1243. Springer, 74–88.

[3] J.A. Bergstra and C.A. Middelburg. 2005. Process algebra for hybrid systems.
Theoretical Computer Science 335, 2 (2005), 215 – 280. Process Algebra.

[4] L. Bocchi, W. Yang, and N. Yoshida. 2014. Timed Multiparty Session Types. In
CONCUR 2014 (LNCS), Vol. 8704. Springer, 419–434.

[5] Joseph Campbell, Cumhur Erkan Tuncali, Peng Liu, Theodore P. Pavlic, Ümit
Özgüner, and Georgios E. Fainekos. 2016. Modeling concurrency and reconfigu-
ration in vehicular systems: A π -calculus approach. In CASE. IEEE, 523–530.

[6] Luca Cardelli and Philippa Gardner. 2012. Processes in space. Theor. Comp. Sci.
431 (2012), 40–55.

[7] Vincenzo Ciancia, Diego Latella, Michele Loreti, and Mieke Massink. 2016. Model
Checking Spatial Logics for Closure Spaces. Logical Methods in Computer Science
12, 4 (2016).

[8] Ankush Desai, Indranil Saha, Jianqiao Yang, Shaz Qadeer, and Sanjit A. Seshia.
2017. DRONA: a framework for safe distributed mobile robotics. In ICCPS 17.
ACM, 239–248.

[9] Cormac Flanagan, K. Rustan M. Leino, Mark Lillibridge, Greg Nelson, James B.
Saxe, and Raymie Stata. 2002. Extended Static Checking for Java. In PLDI. ACM,
234–245.

[10] Tully Foote. 2013. tf: The transform library. In (TePRA) Technologies for Practical
Robot Applications (Open-Source Software workshop). 1–6.

[11] Sicun Gao, Soonho Kong, and Edmund M. Clarke. 2013. dReal: An SMT Solver
for Nonlinear Theories over the Reals. In CADE-24 (LNCS), Vol. 7898. Springer,
208–214.

[12] Ritwika Ghosh, Sasa Misailovic, and Sayan Mitra. 2018. Language Semantics
Driven Design and Formal Analysis for Distributed Cyber-Physical Systems:
[Extended Abstract]. In ApPLIED@PODC 2018. ACM, 41–44.

[13] Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, and Grégoire Sutre. 2002.
Lazy abstraction. In POPL, John Launchbury and John C. Mitchell (Eds.). ACM,
58–70.

[14] Gerard J. Holzmann. 1997. The Model Checker SPIN. IEEE Trans. Software Eng.
23, 5 (1997), 279–295.

[15] Kohei Honda, Nobuko Yoshida, and Marco Carbone. 2016. Multiparty Asynchro-
nous Session Types. J. ACM 63, 1 (2016), 9:1–9:67.

[16] Ruggero Lanotte and Massimo Merro. 2017. A Calculus of Cyber-Physical Sys-
tems. In LATA. Springer, 115–127.

[17] Steven M. LaValle. 2006. Planning algorithms. Cambridge University Press.
[18] Yixiao Lin and Sayan Mitra. 2015. StarL: Towards a Unified Framework for

Programming, Simulating and Verifying Distributed Robotic Systems. In LCTES
15. ACM, 9:1–9:10.

[19] Hugo A. López and Kai Heussen. 2017. Choreographing Cyber-physical Dis-
tributed Control Systems for the Energy Sector. In Proceedings of the Symposium
on Applied Computing (SAC ’17). ACM, New York, NY, USA, 437–443.

[20] Nancy A. Lynch, Roberto Segala, and Frits W. Vaandrager. 2003. Hybrid I/O
automata. Inf. Comput. 185, 1 (2003), 105–157.

[21] Pierluigi Nuzzo. 2015. Compositional Design of Cyber-Physical Systems Using
Contracts. Ph.D. Dissertation. EECS Department, UC Berkeley.

[22] André Platzer. 2010. Logical Analysis of Hybrid Systems - Proving Theorems for
Complex Dynamics. Springer.

[23] Morgan Quigley, Ken Conley, Brian P. Gerkey, Josh Faust, Tully Foote, Jeremy
Leibs, Rob Wheeler, and Andrew Y. Ng. 2009. ROS: an open-source Robot Oper-
ating System. In ICRA workshop on open source software.

[24] John C. Reynolds. 2002. Separation Logic: A Logic for Shared Mutable Data
Structures. In 17th IEEE Symposium on Logic in Computer Science (LICS 2002),
22-25 July 2002, Copenhagen, Denmark, Proceedings. IEEE Computer Society,
55–74.

[25] William C. Rounds and Hosung Song. 2003. The Phi-Calculus: A Language for
Distributed Control of Reconfigurable Embedded Systems. In HSCC. Springer,
435–449.

http://www.impact-erc.eu/
http://www.impact-erc.eu/

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Space and Frames
	2.2 Motion Primitives

	3 PGCD Programs
	3.1 Syntax
	3.2 Semantics

	4 Verification
	5 Implementation and Evaluation
	5.1 Implementation
	5.2 Experiments

	6 Limitations and Future Work
	7 Conclusion
	Acknowledgments
	References

