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Assume-Guarantee Distributed Synthesis
Rupak Majumdar, Kaushik Mallik, Anne-Kathrin Schmuck, and Damien Zufferey

Abstract—Distributed reactive synthesis is the problem of
algorithmically constructing controllers of distributed, commu-
nicating systems so that each closed loop system satisfies a
given temporal specification. We present an algorithm, called
negotiation, for sound (but necessarily incomplete) distributed
reactive synthesis based on assume-guarantee decompositions.
The negotiation algorithm iteratively constructs assumptions
and guarantees for each system. In each iteration, each system
attempts to fulfill its specification and its guarantee (from the
previous round), under the current assumption on the other sys-
tems, by solving a reactive synthesis problem. If the specification
is not realizable, the algorithm computes a sufficient assumption
on the other systems that ensures it can realize the specification
and guarantee. This additional assumption further constrains the
behavior of other systems and they might require an additional
assumption, leading to the next round in the negotiation. The
process terminates when a compatible assumption-guarantee pair
is found for each system, which is sufficient to also satisfy the
specification of each system. We have built a tool called Agnes
that implements this algorithm. Using Agnes, we empirically
demonstrate the effectiveness of our proposed algorithm on two
case studies.

I. INTRODUCTION

We consider the problem of distributed synthesis of reactive
controllers for communicating systems connected in feedback
against local temporal specifications. We consider a setting
where each system reads and writes variables which can be
either local or shared. The communication occurs through
shared variables. In particular, a system only has a partial
view of the overall state: it can look at its own state and the
values of shared variables written by other systems or by the
environment (but not the states of other systems). Each system
has a local specification given by a language over valuations
of its own state variables. We require local controllers for each
system—those that make their decision solely based on locally
available information—such that each system satisfies its own
specification.

Distributed reactive synthesis is a well-studied problem,
going back to the seminal paper of Pnueli and Rosner [31].
Unfortunately, for most distributed architectures, including
the one studied in this paper, the problem of checking if
distributed controllers exist is undecidable [31]. Even when
the problem is decidable, e.g., when systems are connected
in a pipeline fashion, the complexity of reactive synthesis is
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non-elementary. Thus, we must look for sound, but possibly
incomplete, heuristics.

There are very few automated distributed synthesis tools
available today. Among notable exceptions is bounded synthe-
sis [19], in which the existence of distributed controllers up to
a certain size is reduced to a constraint satisfaction problem in
(quantified) Boolean logic; from the validity of the constraint
system, one can read off distributed controllers if they exist.

In this paper, we consider an alternate, modular ap-
proach, based on assume-guarantee decompositions. Assume-
guarantee proof systems provide a compositional approach to
synthesis [4], [9], [10], [12], [14]. In this setting, each system
makes an assumption on the temporal behavior of the other
systems whose output it observes, and in exchange, provides
a guarantee on its own behaviors. A strategy for the controller
is then synthesized to enforce each local specification along
with the guarantee under the hypothesis that the other systems
respect the assumptions. If the behaviors under the synthesized
strategy satisfies the guarantee and, moreover, the guarantee of
each system implies the assumption used by the other systems,
one can prove that the entire closed-loop system, using the
synthesized strategies, satisfies all local specifications.

Usually, assume-guarantee proof systems either require
user-provided assumptions and guarantees or assume a strategy
profile has already been constructed and that systems can syn-
chronize on this joint strategy profile. We take a different route.
We algorithmically synthesize assume-guarantee contracts for
each system such that the composition of these contracts lead
to the fulfillment of the given specification. In this paper, we
only consider safe assume-guarantee contracts, and leave the
study of more general ω-regular contracts as part of the future
work.

The simplest assumptions are true, when a system makes no
assumptions on the other systems. This reduces to synthesizing
strategies for each system assuming the other systems behave
arbitrarily. While sound, this procedure is not so useful in
practice because often, the systems cannot accomplish their
objectives by themselves and require some cooperation from
the other systems. It is also not sufficient to use the local
specification for each system as their guarantees. For example,
if one of the systems has a trivial specification true, it can
satisfy its local specification by playing arbitrarily; some of
these plays may prevent the other systems from meeting their
specification. Thus, our algorithm has to explore the space
of assumptions and guarantees to find mutually beneficial
strategies that enable all systems to satisfy their specifications.

We develop an iterative algorithm that refines assumptions
and guarantees. The key to our algorithm is the notion of
environment assumptions, minimal restrictions on the be-
havior of the environment for a system to ensure its own
specification as well as its previously promised guarantees.
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We use environment assumptions originally characterized by
Chatterjee et al. [15] in the context of centralized reactive
synthesis. In each iteration, we construct minimal environment
assumptions and use the assumptions found by one system
as additional constraints (guarantees) on the behavior of the
others. We iteratively refine assumptions and guarantees until
convergence.

Our algorithm is sound: if we ever find compatible assump-
tions and guarantees, we can derive distributed controllers that
solve the synthesis problem. Since the problem is undecidable,
we cannot ensure termination, although we empirically demon-
strate that the algorithm does terminate for several distributed
synthesis problems.

In each iteration, we split the state space of each system into
three regions: the realizable region, where it can achieve its
specification without any cooperation from the environment,
the surely unrealizable region, where it is never possible to
fulfill the objective even when the environment cooperates, and
the maybe-realizable region, where there is a winning strategy
provided the other system agrees to co-operate. We solve a
reactive synthesis problem on the maybe-realizable region to
find restrictions on the other systems (e.g., using standard fixed
point algorithms [17], [25]) and then compute environment
assumptions (using the algorithm from [15]).

We have built the tool called Agnes, that implements
our algorithm together with several optimizations to reduce
the search space. Internally, we represent assumptions as
automata. We heuristically approximate the automata with
smaller ones, for different metrics. For example, we have
found the so-called l-complete abstractions of languages [27],
that preserve suffixes of length up to l, particularly effective in
our experiments. In contrast to bounded synthesis [19], we do
not need to compute the global state space of all systems and
controller sizes. Instead, we show empirically that for several
benchmarks, the assume-guarantee iteration converges quickly
and finds compatible assume-guarantee contracts.
Related Work. Assume-guarantee proofs are a well-known
approach to modular reasoning about systems [1], [2], [13],
and there are many algorithms that automate the search for
assumptions and guarantees in the context of verification.
Assume-guarantee techniques in synthesis have been studied
before in the embedded context (see the survey [7]), but only
few papers consider the iterative and automatic construction of
assume-guarantee pairs in the distributed synthesis context. In
fact, most synthesis tools do not handle distributed synthesis.

Our algorithm uses the characterization by Chatterjee et
al. [15] of minimal environment assumptions in case of an un-
realizable centralized reactive synthesis problem. Unlike their
paper, we use these assumptions iteratively in a distributed
context. Assumptions are succinct representations of allowed
behaviors of the other system.

Close to our work is the distributed synthesis algorithm
of Alur et al. [5]. Their algorithm finds a solution to the
distributed synthesis problem by iteratively solving local syn-
thesis problems under the assumption that the other compo-
nents cooperate. Afterwards, they build a product of the so
obtained local strategies to resolve any conflicts that may arise.
In contrast, our method is an alternate approach, where the

systems do not need to publicly share their own strategies;
instead they share the (un-)desirable properties of the other
systems from their own perspectives. One advantage of doing
this is that our approach is completely modular: a component
can freely change its control strategy as long as its contracts
are locally fulfilled.

There are also distributed synthesis algorithms which use
assume-guarantee pairs expressed using GR(1) specifica-
tions [3], [4]. However, in their setting, information flows only
one way between the systems and one of the systems has
to realize its specification without any assumptions. Then the
other can assume certain behaviors from the first. In contrast,
we assume feedback composition and a circular proof rule.
In addition, we work with maximal permissive environment
assumptions, using the algorithms and characterization from
[15], whereas the assumptions are syntactic patterns in [3].
Since we assume feedback composition, our algorithm, in
contrast to theirs, is an iterative fixed point computation.

An important question in synthesis under assumptions is
whether a system can “cheat” and win a game by invalidating
an environment assumption, and many recent papers have
proposed notions of compositional synthesis that prevents such
cheating [11], [22], [24]. This is not a problem in our context,
as our assumptions are over the external alphabet and a system
cannot willfully prevent any environment behavior. Often, co-
ordinated behavior is enforced through game-theoretic means
that go beyond the classical setting of reactive synthesis [8],
[12], [16], [18], [20], [23]; instead, we work in the classical
Pnueli-Rosner setting.

II. EXAMPLE: DISTRIBUTED SHARED BUS

We start with a simple example to describe our algorithm.
Consider a distributed architecture with two synchronous
systems C0 and C1, where each system attempts to transmit
a single data packet through a shared bus within a certain
deadline. Assume that sending each data packet takes one
time unit for the bus. There is no handshaking involved in the
transmission process: whenever a system wants to send the
packet, it simply needs to write it at the sending end of the
bus. However, if both systems write their data packet exactly
at the same instant, the bus turns down the send request from
both of the systems to avoid data corruption. When a send
request is turned down by the bus, the systems can attempt to
resend the failed data packet in the future.

Figure 1 shows the structure of one system in a guarded
command language. The other system is similar. Each system
has state variables (separate copies of s and t) that it reads and
writes, external variables from the environment that it can read
(env ), and output variables that it writes and that provide its
visible state to the environment (out). The external variables
provide the visible state of the rest of the system—a system
does not control their values. Additionally, the system has a
number of input actions (wait and wr ) it can use to determine
how its state is updated.

A state maps the state variables to values. Initially, the state
is (idle, 4): the system has 4 steps to send the packet. The
transitions map the current state, current values of external

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TCAD.2020.3012641

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



3

state var s ∈ {idle,writing , done},
t ∈ {1, 2, 3, 4}

external var env ∈ {idle, busy}
output var out ∈ {idle, busy}
input action U = {wait ,wr}

init s = idle, t = 4
transition
[] s = idle

wait−−→ s ′ = idle ∧ t ′ = t − 1
[] s = idle

wr−→ s ′ = writing ∧ t ′ = t − 1
[] s = writing ∧ t ≥ 2 ∧ env = idle

wr−→ s ′ = done
[] s = writing ∧ t ≥ 2 ∧ env = busy

wr−→
s ′ = writing ∧ t ′ = t − 1

output out = busy if s = writing and idle otherwise

Fig. 1: The packet sender system. Our example has two such
systems running synchronously in parallel.

variables, and current choice of control inputs to new values
of the state variables. For example, when the state is idle ,
picking the wait input action keeps the state idle but decreases
t ; picking the wr input action changes the state to write and
also decreases t . The output variable is a function of the state;
it is visible to other systems.

Intuitively, the system moves from idle to writing and then
to done , once it successfully sends the packet. However, if
the bus is busy, it may fail to send the packet by the deadline.
Each system wants to eventually successfully write its data
packet. In terms of state variables, and using linear temporal
logic (LTL) notation, the specification is ♦(s = done).

We are looking for a distributed solution to the problem:
each system must run a local controller that only sees the state
of the system and the history of external inputs that it receives.
Thus, we cannot simply take the product of the individual
state spaces and run a reactive synthesis algorithm for the
conjunction of the local specifications.

Worst-Case Environment. Suppose we try to find a controller
for each system, independently of the other. Unfortunately, we
realize that there is no local controller without any assumptions
on the behavior of the other system: in the worst case, the
other system could be writing in all cycles, and our system
will never be able to send its packet.

Assume the Specification of the Environment. Clearly, a
“worst-case” behavior is too pessimistic. At least, the other
system must satisfy its own specification. What if we assumed
that the behavior of the other system is constrained by its own
specification? Unfortunately, this is still not sufficient in our
example: if we only know that the other system eventually
does not write to the bus, we could still try to write in the
same cycle. Moreover, both systems could end up waiting for
each other.

Assumptions, Guarantees, and Negotiations. An intuitive
solution to the problem is that one system promises to write
only in even cycles and the other only in odd cycles. Then,
the first system can make progress towards its write: it waits
until the next even cycle and writes.

We have performed an assume-guarantee decomposition
of the problem. Each system makes an assumption on the
behavior of the other system, and under the assumption, it

implements a controller that satisfies its specification and
possibly a further constraint on its behavior—its guarantee
to the other systems. If the guarantees of one system are
contained in the assumptions made by the other, then we can
show that there is a distributed controller implementation.

Our contribution is to show how we can automatically come
up with such assume-guarantee pairs. In real life, whenever
two entities, people or organizations, with their own set of
interests need to make an agreement for a peaceful co-
existence, a negotiation process is called for. Accordingly,
we call our algorithm to iteratively compute assume-guarantee
pairs a negotiation. We will use the above motivating example
to give an informal description of our solution method.

The negotiation is an iterative procedure. Initially, we make
no assumptions about the other system and check if perhaps
each system can satisfy its specification no matter how the
other one behaves; if so, we are done. On the other hand, if
a system cannot satisfy its specification even while assuming
full cooperation of the others, we can stop—certainly we shall
not find any implementation in this case.

Otherwise, we proceed by finding an environment assump-
tion: a restriction on the behavior of the other system that
enables our system to satisfy its specification.

Let us look at the negotiation from the perspective of
system C0. For example, assuming t = 4, C0 would find an
assumption A0 = (busy1 + idle1) · (busy1 + idle1) · idleω1 ,
which states that system C1 does not transmit after the second
cycle. Under this assumption, C0 can satisfy its specification:
simply send the packet after the second cycle.

Next, we check if system C1 can indeed satisfy its own
specification while additionally guaranteeing the assumption
A0 of system C0. We check this by defining the guarantee
G1 as the projection of A0 to the output variables of C1 and
seeing if C1 has a winning strategy in the game ♦done ∧
G1. Unfortunately, since system C1 makes no assumptions (its
current assumption is “true”), it cannot fulfill this specification.
We find a tighter environment assumption that C0 must ensure
in order for C1 to win; it is the language A1 = (busy0+idle0)·
idle0 · (busy0 + idle0)ω , which states that system C0 does not
transmit in the second cycle.

In general, given a system’s current assumption Ai and
guarantee Gi, we check if it has a strategy to fulfill its
specification Φi = ♦done under the contract (Ai, Gi). If
not, we find a new assumption and update the other system’s
guarantee, which starts a new round of negotiation.

We show this process is sound: if both systems can win
the above game, then the current assumptions and guarantees
form an assume-guarantee decomposition, and we can “read
off” a distributed controller implementation. In our example,
the negotiation terminates in the second round and outputs
these final assumptions and guarantees:

A0 = (busy1 + idle1) · (busy1 + idle1) · idleω1 (1)
G0 = (busy0 + idle0) · idle0 · (busy0 + idle0)ω (2)
A1 = (busy0 + idle0) · idle0 · (busy0 + idle0)ω (3)
G1 = (busy1 + idle1) · (busy1 + idle1) · idleω1 (4)
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III. ASSUME-GUARANTEE DECOMPOSITIONS

A. Preliminary Definitions

For an alphabet Σ, we write Σ∗ and Σω to denote the set
of finite and infinite words over Σ, and Σ∞ the set Σ∗ ∪Σω .
We write ε for the empty word and Σ+ = Σ∗ \ {ε} for the set
of non-empty finite words.

We define the prefix relation on words as u ≤ w if there
exists v such that uv = w. Note that w can be an ω-word.
We extend the notion to languages: the prefix of a language
L, written pref(L), is the set {w ∈ Σ∗ | ∃u ∈ L.w ≤ u}.
A language L is prefix-closed if, whenever w ∈ L and
u < w, then u ∈ L. Given a (∗-)language L ⊆ Σ∗, we
define the limit lim(L) of L as the ω-language {u ∈ Σω |
∃ infinitely many n s.t.u[1,n] ∈ L}. Thus, an infinite word
belongs to the limit of a ∗-language L iff infinitely many of
its prefixes belong to L. If L is prefix-closed, this implies that
an infinite word belongs to lim(L) iff all its finite prefixes
belongs to L. An (ω-)language L is a safety language if
L = lim(pref(L)) and a liveness language if pref(L) = Σ∗.

We shall consider systems defined by variables ranging over
a fixed finite domain. For a set of variables X , we write X (the
same symbol, in blue bold face) for a valuation that maps each
variable in X to a value in its domain. We need the following
notation. Suppose X and Y are two disjoint sets of variables.
We write X×Y for the joint valuation that maps each variable
in X ∪ Y to a value in that variable’s domain. For any given
x ∈ X×Y, we write x[X] and x[Y ] for the restriction of x
to the domain X and Y , respectively. Conversely, if x ∈ X
and y ∈ Y, we write x ⊕ y ∈ X ×Y for the valuation that
maps variables in X and Y according to x and y respectively.

Let X be a set of variables. For a word x = x0x1 . . . ∈ X∞,
and a subset Y ⊆ X , we write the projection projY (x) for
the word x0[Y ]x1[Y ] . . . that restricts each xi, i ≥ 0, to the
domain Y . For a relation E ⊆ X × Y , we write domE to
denote the domain {x ∈ X | ∃y ∈ Y . (x, y) ∈ E} of E.

B. Systems

A system C = (X,xin , U,W, δ, Y, h) consists of a finite set
X of state variables, an initial state xin ∈ X, a finite set of
input actions U , a finite set of external variables W , a total
transition function δ : X×W×U → X, a finite set of output
variables Y , and an output labeling function h : X→ Y. We
assume the sets of variables are pairwise disjoint.

The run of a system C starting from a state x0 is a sequence

ρ ≡ x0
w0,u0

−−−−→ x1
w1,u1

−−−−→ x2
w2,u2

−−−−→ . . ., where xi ∈ X,
wi ∈ W, ui ∈ U for each i ≥ 0, and moreover we
have δ(xi, wi, ui) = xi+1 for each i ≥ 0. Unless otherwise
mentioned, we will always assume that a run starts at the
initial state, i.e., x0 = xin . The output of the run is the
sequence h(x0)h(x1) . . ., which maps states to their output
labels. Intuitively, first, the set of state variables are set to the
initial value x0. Then, in each step, the external variables in
W are set to arbitrary values, and an action from U is picked.

The transition relation determines the new values of the
state variables, and the output variables get their values
from the state variables using the output labeling func-
tion. For the run ρ, we write projX(ρ) for the sequence

Env

C0

x0 ∈ X0
u0

C1

x1 ∈ X1
u1

w0 ∈
W \Y1

w1 ∈
W \Y0

h0(x0)[Y0 ∩W1]h1(x1)[Y1 ∩W0]

Fig. 2: A composition C0 ‖ C1

x0x1 . . . ∈ Xω , projW (ρ) for w0w1 . . . ∈ Wω , projY (ρ)
for h(x0)h(x1) . . . ∈ Yω , and for any given subset V ⊆ W ,
we write projV (ρ) for w0[V ]w1[V ] . . . ∈ Vω .

Let C0 and C1 be two systems; assume X0, X1, Y0, and Y1
are all disjoint. We define their parallel composition C0 ‖ C1

(see Fig. 2) as the system (X,xin , U0 × U1,W, δ, Y0 ∪ Y1, h),
where X = X0]X1, xin = xin0⊕xin1, W = W0∪W1\(Y0∪
Y1), δ : X×W×U0×U1 → X, and h : X→ Y0×Y1, such
that h(x) = h0(x[X0]) ⊕ h1(x[X1]) and δ(x,w, (u0, u1)) =
x′ iff δ0(x[X0], (w ⊕ h1(x[X1]))[W0], u0) = x′[X0] and
δ1(x[X1], (w ⊕ h0(x[X0]))[W1], u1) = x′[X1].

A run ρ of C0 ‖ C1 is a sequence

x0
w0,(u0

0,u
0
1)−−−−−−−→ x1 → . . .

where for each i ≥ 0, we have xi ∈ X, wi = W, ui0 ∈ U0,
ui1 ∈ U1, such that x0 = xin and for each i ≥ 0, we have
δ(xi, wi, (ui0, u

i
1)) = xi+1.

Intuitively, the two systems C0 and C1 run synchronously
in parallel. The state of the system is a valuation to the state
variables of each system. In each step, an environment sets
the values of variables in W . Each system sees the valuation
to its external variables, which consist of the variables set by
the environment as well as the output variables of the other
system, picks an input action, and updates its state based on
its transition function.

C. Distributed Realizability

Specifications and Realizability. A specification for a system
is a language Φ ⊆ (X ×W)ω that describes the correct

runs; a run x0
w0,u0

−−−−→ x1 → . . . satisfies a specification
Φ if (x0, w0)(x1, w1) . . . ∈ Φ. A local specification is a
language Φ ⊆ Xω . A run satisfies a local specification Φ if it
satisfies the specification {(x0, w0)(x1, w1) . . . ∈ (X×W)ω |
x0x1 . . . ∈ Φ}.

A strategy for a system is a function π : (X ×
W)+ → U . Likewise, an environment strategy is a func-

tion π′ : (X × W)∗ × X → W. A run x0
w0,u0

−−−−→
x1 → . . . is compliant with π and/or π′ if for each
i ≥ 0, we have ui = π(x0, w0, . . . , xi, wi) and/or wi =
π′(x0, w0, . . . , xi−1, wi−1, xi). We denote by ρ(π, π′) the
unique run compliant with π and π′. Unless stated otherwise,
a compliant run must start from x0 = xin .

A system C can realize a specification Φ (or Φ is realizable
by C) if there is a system strategy π, called the realization
strategy for Φ, such that for all runs ρ compliant with π holds
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that projX×W (ρ) ∈ Φ. Intuitively, we model the realizability
of a specification as a two-player game between the system
and the environment; the system can realize a specification
if it has a realization strategy such that no matter how the
environment plays, the resulting run belongs to the language
of the specification.

We sometime use Linear Temporal Logic [6] notation to
express local specifications. For example, given a set B ⊆ X,
we write �B (safety: “always B”), ♦B (reachability: “eventu-
ally B”), and �♦B (Büchi “eventually always B”) to denote
respectively the sets {x0x1 . . . | ∀i ≥ 0 . xi ∈ B} ⊆ Xω ,
{x0x1 . . . | ∃i ≥ 0 . xi ∈ B} ⊆ Xω , and {x0x1 . . . | ∀i ≥
0 . ∃j ≥ i . xj ∈ B} ⊆ Xω .

Distributed Realizability. Now consider a composition C0 ‖
C1. Suppose Φ0 ⊆ X0

ω and Φ1 ⊆ X1
ω are local specifica-

tions defined on the state variables of each system. One can
define realization for the composition C0 ‖ C1 by considering
a game between the composed system and the environment.
However, such a centralized realization strategy may require
coordination, e.g., to know the states of the two systems at
some point. Instead, we want the realization strategies to be
distributed: each component C0 and C1 should be able to pick
their inputs based solely on the local history of valuations to
state variables and their own environment inputs.

We model the distributed synthesis problem as a game (of
incomplete information) between three players: system C0,
system C1, and the environment. The game starts from the
initial state xin of C0 ‖ C1. In each step of the game, first, the
environment picks values for the external variables in W , and
then the systems C0 and C1 independently and simultaneously
pick actions and the game proceeds to the next state.

We require that the strategies of system C0 and system C1

only depend on the history visible to them. Thus, we define
a strategy of system Ci, i ∈ {0, 1}, to be a function of the
form (Xi ×Wi)

+ → Ui. Fixing strategies π0, π1, and π′ of
systems C0, C1, and the environment, respectively, yields a
unique run ρ(π0, π1, π

′) of the system C0 ‖ C1.
The distributed synthesis problem (C0,Φ0, C1,Φ1) for the

composition C0 ‖ C1 with local specifications Φ0 ⊆ X0
ω and

Φ1 ⊆ X1
ω asks if there exist strategies π0 : (X0 ×W0)+ →

U0 and π1 : (X1×W1)+ → U1 such that for all strategies π′ :
(X×W)∗×X→W, we have that projX0

(ρ(π0, π1, π
′)) ∈

Φ0 and projX1
(ρ(π0, π1, π

′)) ∈ Φ1. In that case, we say
C0 ‖ C1 can realize the distributed synthesis problem.

Clearly, if C0 and C1 can each realize the local specifica-
tions Φ0 and Φ1 respectively, then C0 ‖ C1 can also realize the
distributed synthesis problem. This is because the strategies do
not make any assumptions on the behavior of the other system.
However, it is possible that C0 and C1 do not each realize
their specifications but they realize the distributed synthesis
problem; for example, one system can use an assumption about
the behavior of the other.

Unfortunately, the distributed synthesis problem is unde-
cidable in general [31]. We summarize the discussion in the
following proposition.

Proposition III.1. (1) If for i ∈ {0, 1}, the system Ci realizes
Φi then the composition C0 ‖ C1 realizes the distributed

synthesis problem (C0,Φ0, C1,Φ1). (2) [31] The distributed
synthesis problem is undecidable.

We introduce some notation. For i ∈ {0, 1}, we define the
realizable region, denoted as 〈〈Ci〉〉Φi, as the largest subset
of Xi such that for all states x ∈ 〈〈Ci〉〉Φi there exists a run
ρ compliant with a realization strategy π of Φi that visits x.
Now consider a composition C0 ‖ C1. We say system Ci can
maybe-realize Φi (or Φi is maybe-realizable by Ci) if there
is a pair of (possibly co-ordinated) strategies π0, π1, called
the joint realization strategy, such that for all strategies π′ it
holds that projXi

(ρ(π0, π1, π
′)) ∈ Φi. We define the maybe-

realizable region, denoted as 〈〈C0, C1〉〉Φi, as the largest subset
of Xi such that for all states in x ∈ 〈〈Ci〉〉Φi there exists a
run ρ compliant with a joint realization strategy π0, π1 of Φi

that visits x. We also define the surely unrealizable region as
the complement of the maybe-realizable region.

D. Assume-Guarantee Contracts
Given a system C, an assume-guarantee contract—a con-

tract in short—is a pair (A,G) of safety languages called the
assumption A ⊆ Vω for some V ⊆ W , and the guarantee
G ⊆ Xω .

Definition III.2. Let C be a system, and (A,G) be a contract.
Then C can realize (A,G) if and only if there exists a system
strategy π, such that for all k > 0 and for all finite runs

r ≡ x0
w0,u0

−−−−→ x1 → . . . xk compliant with π, either of the
following hold:
(a) projX(r) ∈ pref(G),
(b) there exists 0 ≤ l < k such that projV (r)|[0,l] /∈ pref(A).
That is, a violation of G is preceded by a violation of A. The
respective strategy π is called a realization strategy for (A,G).

For a contract (A,G) and specification Φ, we say C can
realize Φ under contract (A,G), written C can realize the
specification 〈AB ΦBG〉, if there exists a strategy of C that
is both a realization strategy for the contract (A,G) and a
realization strategy for the specification (A⇒ Φ). The maybe-
realizability and sure unrealizability of a contract (A,G) and
the specification 〈AB ΦBG〉 are defined analogously.

Definition III.3. Consider a system composition C0 ‖ C1. Let
(A0, G0) and (A1, G1) be a pair of contracts for respectively
C0 and C1 such that ∅ ( Ai ⊆ Yω

1−i and ∅ ( Gi ⊆ Xω
i .

Then the contracts (A0, G0) and (A1, G1) are compatible if
the following conditions are met for both i ∈ {0, 1}:
(a) Gi ⊆ h−1i (A1−i), and (b) Ci realizes (Ai, Gi).

The composition of compatible contracts satisfies the fol-
lowing claim, motivated by [2], [13], [26], [28], [29], [32]:

Theorem III.4. [Assume Guarantee Decomposition] Let
(C0,Φ0, C1,Φ1) be the input to a distributed synthesis prob-
lem. Let (A0, G0) and (A1, G1) be a pair of compatible
contracts of C0 and C1 respectively. If C0 can realize Φ0

under (A0, G0) and C1 can realize Φ1 under (A1, G1), then
C0 ‖ C1 can realize the distributed synthesis problem.

Proof. We use the following notation. For a given run ρ ≡
x0

w0,u0

−−−−→ x1 → . . . xk
wk,uk

−−−−→ xk+1 → . . . and for a
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given k ≥ 0, we write rk(ρ) for the prefix of the run

x0
w0,u0

−−−−→ x1
w1,u1

−−−−→ . . .
wk−1,uk−1

−−−−−−−→ xk of length k.
I First, observe that a compatible contract implies that there
exist two strategies π0 and π1 which fulfill the conditions in
Def. III.2 for the individual systems C0 and C1. Let, for some

strategy of the external environment, ρ ≡ x0 w0,(u0
0,u

0
1)−−−−−−−→ x1 →

. . . be a run of C0 ‖ C1 that is compliant with both π0 and
π1. First, for both i ∈ {0, 1}, we prove by induction that for
every k, projXi

(rk(ρ)) ∈ pref(Gi); then because Gi is a
safety language, it will be established that projXi

(ρ) ∈ Gi.
. The base case: For k = 0, projXi

(rk(ρ)) = xin i, and we
see that Cond. (a) in Def. III.2 must hold. (Cond. (b) can not
be true since l cannot be negative.)
. Induction step: Fix a k ≥ 0 s.t. projXi

(rk(ρ)) ∈ pref(Gi)
for both i ∈ {0, 1}. That is, Cond. (a) in Def. III.2 holds.
We show that the same is true for k + 1. We obtain the
following chain of implications: From the assumption we
have projXi

(rk(ρ)) ∈ pref(Gi). With this, it follows from
Def. III.3 (a) that projYi

(rk(ρ)) ∈ pref(A1−i). This implies
that for all 0 ≤ l < k + 1, projYi

(rl(ρ)) ∈ pref(A1−i).
This in turn implies that Cond. (b) in Def. III.2 does not hold
for rk+1(ρ) for both i ∈ {0, 1}. Therefore, Cond. (a) must
hold, which proves the induction step. I With this we get
projXi

(rk(ρ)) ∈ pref(Gi) for any k ∈ N . As Gi is a safety
language, this implies projXi

(ρ) ∈ Gi. Then it follows from
Def. III.3 (a) that projYi

(ρ) ∈ A1−i.
I Both systems Ci can additionally realize their specifica-
tion Φi under the given contract if there exist strategies π0
and π1 which renders both contracts compatible (implying
projYi

(ρ) ∈ A1−i over all its compliant traces from above)
and additionally ensuring that Φi holds on all traces on
which Ai holds. As the latter is always true, we see that
projXi

(ρ) ∈ Φi for both i ∈ {0, 1} .

IV. THE NEGOTIATION PROCESS

Our goal is to iteratively compute a pair of compatible
contracts. Our procedure will be sound: if it returns contracts
(A0, G0) and (A1, G1), we shall be certain that the premises
of Thm. III.4 hold. However, since the distributed synthesis
problem is undecidable, we may not find compatible contracts.

The iterative computation progresses in rounds. Initially
(round 0), the assumptions A0, A1 and the guarantees G0,
G1 allow all behaviors. In each round, C0 and C1 check
if each can realize the specification 〈Ai B Φi BGi〉. If so,
the iteration ends, and we return the current assumptions and
guarantees. On the other hand, if either system surely cannot
realize its respective contract, then there is no point continuing
and the process stops with failure. If none of the above
happens, the negotiation process continues and the systems
take turns to refine their assumptions and guarantees.

The key step in refining the assumptions and guarantees
requires finding a sufficient assumption on the other system
that enables realization of the current specification. In prin-
ciple, this assumption should also be maximally permissive
to offer maximal freedom to the other system. We first define
maximally permissive sufficient assumptions, and then use this
definition to formalize the negotiation procedure. At the same

x1start x2

v2

v1

v1, v2

C0

Fig. 3: A simple game

time, we also demonstrate that maximal permissiveness comes
with its own technical challenges and lack of practicality. So
in the end, we resort to a more practical and non-maximally
permissive assumption, and show how to compute them.

A. Maximally Permissive Sufficient Assumption

We fix an input (C0,Φ0, C1,Φ1). A language L ⊆ Y1−i
ω

is a maximally permissive sufficient assumption—simply as-
sumption in short—for Φi if (1) L is sufficient, i.e., Ci can
realize (L⇒ Φi) and (2) L is maximally permissive, i.e., Ci

cannot realize (L′ ⇒ Φi) for any proper superset L′ ) L.
Intuitively, an assumption is a sufficient restriction on the

other system: Ci can realize its specification provided the other
system always produces outputs belonging to the assumption.
Moreover, the assumption is maximal in that no proper super-
set is sufficient for Ci to realize its specification: this ensures
we restrict the other system in the least pervasive way.

If Ci can already realize Φi on its own, then the assumption
is all of Y1−i

ω . If Ci surely cannot realize Φi, then ∅ is
a maximal assumption. The maximality constraint rules out
“trivial” solutions such as L = ∅ in other cases.

Example IV.1. Consider system C0 in Fig. 3. We assume U0

is a singleton, and so we have omitted it from the figure. There
is a single system strategy π that picks the singleton action at
each state. The external variable has values {v1, v2}. Consider
the specification �♦x2, that requires the state x2 to be visited
infinitely often. The system cannot realize this property if from
some point on, the environment keeps playing v1 when the state
is x1. Thus, a maximally permissive sufficient assumption is
L1 = ((v∗1(v2(v1 + v2))∗)∗v2)ω . A sufficient assumption is
L2 = (v1v2)ω , which is not maximally permissive because
L1 ) L2.

The following example suggests that maximally permissive
sufficient assumptions are not unique.

Example IV.2. Consider a system with two input actions H
and T and an external variable with two values, also called
H and T . From the initial state xin , the inputs H and T take
the system to two different states h and t, respectively. Once
at h or t, the state returns to xin only if the environment
plays H or T , respectively, but otherwise the state goes to
bad and subsequently stays there no matter what input or
action is chosen. Consider the specification �¬bad . Since
the system does not know what the environment will play
next, the specification is not realizable. However, any singleton
ω-language is a maximally permissive sufficient assumption.
Thus, there are infinitely many incomparable assumptions, and
they even may not be ω-regular.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TCAD.2020.3012641

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



7

Maximality is useful to ensure non-trivial assumptions but,
as Ex. IV.2 shows, this may lead to unbounded iterations
through strategies and counter-strategies. Moreover, a maximal
assumption might leave the system with only a single available
realization strategy [15]. To mitigate these two issues, we
consider an under-approximation of maximal assumptions.
Note that strengthening an assumption retains realizability. A
sufficient assumption L for Φ is called universally maximally
permissive, if (1) L is a sufficient assumption, and (2) L is
the intersection of every maximally permissive assumption.
Universally maximal assumptions give up completeness—∅
is the only universally maximal assumption in Ex. IV.2—but
bound the search space of assumptions because it is unique.
Moreover, it gives maximal freedom to the system in choosing
from all possible realization strategies.

Procedure FindAssumptions . For the moment, we assume
the following: there is a procedure FindAssumptions that
given a system C, a specification Φ, and safe ω-languages
(A,G), returns a safe sufficient assumption for the specifi-
cation 〈AB ΦBG〉. We expect that the assumption gives as
much freedom to the other system as possible. We shall discuss
implementations of FindAssumptions subsequently.

B. Negotiation

As mentioned earlier, the iterative computation of contracts
proceeds in rounds, called negotiation. We call the overall
iterative algorithm Negotiate, and the steps are summarized
in Proc. 1. Initially (round 0), the existing assumptions A0,
A1 and the guarantees G0, G1 allow all behaviors:

A
(0)
0 = Y1

ω, G
(0)
0 = X0

ω, A
(0)
1 = Y0

ω, G
(0)
1 = X1

ω.

Suppose we have constructed A
(r)
i , G

(r)
i for i ∈ {0, 1} in

round r. Let us look at round r + 1.
In round r + 1, if either system Ci surely cannot realize

the specification G
(r)
i ∩ Φi, we can give up with failure—

certainly, we shall not find a refinement that works. In this
case Proc. 1 returns DoesNotExist. On the other hand, if
both systems can realize their specification under the current
contracts

(
A

(r)
i , G

(r)
i

)
, we have converged and we can stop

and return the current contracts.
If the above conditions do not hold, we first pick the as-

sumption L from FindAssumptions
(
C0,

(
A

(r)
0 , G

(r)
0

)
,Φ0

)
,

and if L is non-trivial then update the assumptions and
guarantees as follows:

A
(r+1)
0 := A

(r)
0 ∩ L, G

(r+1)
1 := G

(r)
1 ∩ h

−1
1 (L). (5)

Then, we pick the additional sufficient assumption L′ from
FindAssumptions

(
C1,

(
A

(r)
1 , G

(r+1)
1

)
,Φ1

)
, and if L′ is

non-trivial then update the assumptions and guarantees as
follows:

A
(r+1)
1 := A

(r)
1 ∩ L′, G

(r+1)
0 := G

(r)
0 ∩ h

−1
0 (L′). (6)

We move to the next round with these new contracts. Note
that, at the end of every round, Proc. 1 either fails to find a
contract and returns DoesNotExist, or else it obtains the

Procedure 1 Negotiate

Input: (C0,Φ0, C1,Φ1)
Output: A0, G0, A1, G1 or DoesNotExist

1: A
(0)
0 ← Y1

ω , G(0)
0 ← X0

ω , A(0)
1 ← Y0

ω , G(0)
1 ← X1

ω

2: for r = 0, 1, 2, . . . do
3: if Ci can realize 〈A(r)

i B Φi BG
(r)
i 〉 for both i ∈

{0, 1} then
4: return A

(r)
0 , G

(r)
0 , A

(r)
1 , G

(r)
1

5: end if
6: if Ci surely cannot realize 〈A(r)

i B Φi BG
(r)
i 〉 for

either of i ∈ {0, 1} then
7: return DoesNotExist
8: end if
9: L← FindAssumptions

(
C0,

(
A

(r)
0 , G

(r)
0

)
,Φ0

)
10: A

(r+1)
0 := A

(r)
0 ∩ L, G(r+1)

1 := G
(r)
1 ∩ h

−1
1 (L)

11: L′ ← FindAssumptions
(
C1,

(
A

(r)
1 , G

(r+1)
1

)
,Φ1

)
12: A

(r+1)
1 := A

(r)
1 ∩ L′, G

(r+1)
0 := G

(r)
0 ∩ h

−1
0 (L′)

13: end for

sets A(r)
0 , A(r)

1 , G(r)
0 , and G

(r)
1 which are all nonempty as

required by Def. III.3.
We are ready to state our main theorem on Negotiate.

Theorem IV.3. If Negotiate(C0,Φ0, C1,Φ1) returns con-
tracts (A0, G0), (A1, G1), then the contracts (A0, G0) and
(A1, G1) are compatible, and moreover each Ci can realize
〈Ai B Φi BGi〉 for i ∈ {0, 1}.

Proof of Thm. IV.3. We show that both the conditions of
Def. III.3 are met: Cond. a follows by induction over the
round indices r and by the construction of the assumptions and
guarantees in each round. (Actually, we maintain the invariant
G

(r)
i = h−1i (A

(r)
1−i) at each round r, which is stronger than

Cond. a.) Cond. b follows from the condition on successful
termination.

C. Implementing FindAssumptions

We now describe the algorithm FindAssumptions to com-
pute a safe under-approximation of the universally maximally
permissive sufficient assumption. For algorithmic effective-
ness, we only find assumptions and guarantees which are
safe ω-regular languages (compared to safe ω-languages
as per Def. III.2). This restriction allows us to implement
FindAssumptions by using operations on finite structures.
Our algorithm uses as subroutines both the (non-distributed)
realizability algorithm from [25], [30], [33] and the algorithm
to compute environment assumptions from [15].

Subroutine I: Centralized Reactive Synthesis. The following
theorem (summarizing [30], [33]) outlines a method that
can be used for solving a reactive synthesis problem in the
presence of assume-guarantee contracts. Given a system C, a
natural number d > 0, and a mapping c : X → {0, . . . , d}
that maps each state to a priority, recall that a parity objective
Ψ(c) states that the minimum priority visited infinitely often
is even.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TCAD.2020.3012641

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



8

Theorem IV.4. Let C = (X,xin , U,W, δ, Y, h) be a system,
and V ⊆ W be a subset of disturbance variables under
the control of another system C ′. Given a pair of ω-regular
languages A ⊆ Vω and G ⊆ Yω , and an ω-regular
specification Φ ⊆ Xω , there is an effectively constructible
system C̃ = (X̃, x̃in , U,W, δ̃, Y, h̃), a number d ≥ 0, and a
parity specification Ψ(c) for a mapping c : X̃ → {0, . . . , d},
such that the following hold:

(i) System C̃ can realize Ψ(c) if and only if system C can
realize 〈AB ΦBG〉.

(ii) System C̃ can maybe-realize Ψ(c) in the composition
C̃ ‖ C ′ if and only if system C can maybe-realize
〈AB ΦBG〉 in the composition C ‖ C ′.

(iii) There is a mapping from the set of memoryless realization
strategies of the form π̃ : X̃ → U of C̃ to the set of
realization strategies of C.

(iv) There is a mapping from the set of memoryless joint
realization strategies of the form π̃ : X̃ → U × V of
C̃ and C ′ to the set of joint realization strategies of C
and C ′.

The system C̃ is essentially the product of the original sys-
tem with a deterministic parity automaton for the specification
〈AB ΦBG〉 (see, e.g., [15]). Recall that parity specifications
have memoryless realization strategies, and each strategy of
C̃ can be converted to a strategy (possibly using memory) for
the original system.

Subroutine II: Finding Environment Assumptions. The
second subroutine is the method of Chatterjee et al. [15] to
compute a minimal set of sufficient environment assumptions
for satisfaction of a given omega-regular specification. At a
high-level, their algorithm imposes safety and liveness restric-
tion on sets of environment behaviors which help the system
to realize its specification. The safety restrictions, here called
safe-sufficient restrictions, require that certain environment
actions be never applied at certain system states. The liveness
restrictions, here called live-sufficient restrictions, require that
certain environment actions be repeatedly taken if certain
system states are repeatedly visited (strong liveness property).
We formalize these in the following.

Fix a system composition C0 ‖ C1. First, we formalize safe-
sufficient and live-sufficient restrictions w.r.t. system C0, with
the understanding that similar results can be obtained for C1

just by changing the indices. Let Φ ⊆ (X0)ω be a local parity
specification for C0.

A set of pairs Es ⊆ X0×Y1 is a safe-sufficient restriction
on C1 for Φ if there exists a strategy π : X0×W0 → U of C0

such that for every joint counter-strategy π′ : X0 →W0 of C1

and the environment, the resulting run ρ(π, π′) ≡ x0
w0,u0

−−−−→
x1

w1,u1

−−−−→ x2
w2,u2

−−−−→ . . . satisfies the following: either (a) there
exists a i ≥ 0 with (xi, wi[Y1]) ∈ Es, or (b) for all i ≥ 0,
xi ∈ 〈〈C0, C1〉〉Φ. A safe-sufficient restriction Es is unfair if
there is a run ρ and there is a pair (x, y) ∈ Es such that at
some time instant j, projX0

(ρ)j = x and projY1
(ρ)j = y,

and yet ρ ∈ Φ. A safe-sufficient restriction is fair if it is not
unfair, and moreover it is minimal if no other safe-sufficient
restriction of smaller size exists.

A set of pairs El ⊆ X0 ×Y1 is a live-sufficient restriction
on C1 for Φ if there exists a strategy π : X0 → U of C0

such that for every joint counter-strategy π′ : X0 →W0 of
C1 and the environment, the resulting run ρ(π, π′) satisfies
the following: either (a) there exists a pair (x, y) ∈ El such
that in the run ρ(π, π′), x appears infinitely often but after
some finite time step, y never immediately follows x, or (b)
projX0

(ρ(π, π′)) ∈ Φ. A live-sufficient restriction El is called
minimal if no other live-sufficient restriction of smaller size
exists. A live-sufficient restriction El is called locally minimal
if no strict subset of El is itself a live-sufficient restriction.

The restrictions Es and El for Φ induce a safety assumption
ΨEs

⊆ Y1
ω and a liveness assumption ΨEl

⊆ Y1
ω on the

output behavior of the system C1 respectively. The set ΨEs
is

the set of all infinite output words y ∈ Y1
ω of C1 such that

there exists a run ρ with y = projY1
(ρ), and for all i ≥ 0,

(xi, yi) /∈ Es. The set ΨEl
is the set of all infinite output

words y ∈ Y1
ω of C1 such that there exists a run ρ with

y = projY1
(ρ), and for all (xi, yi) ∈ El, either xi appears

finitely often in ρ or (xi, wi) appears infinitely often in ρ.
The important observations about ΨEs

and ΨEl
are sum-

marized in the following theorem.

Theorem IV.5. [15] For a system composition C0 ‖ C1, the
following assertions hold:

1) If C0 can maybe-realize Φ, then there exists a unique
minimal fair safe-sufficient restriction Es on C1.

2) If (a) Φ is a reachability, safety, or Büchi specification
and (b) C0 can realize the specification �〈〈C0, C1〉〉Φ,
then if there exists a sufficient assumption Ψ 6= ∅ for Φ,
then there exists a live-sufficient restriction El on C1.

3) Let Φ0 ⊆ X0
ω be a parity specification, and Es, El

be respectively the safe-sufficient and the live-sufficient
restrictions on C1 for Φ. If Ψ = ΨEs

∩ΨEl
6= ∅, then Ψ

is a sufficient assumption for Φ.
4) The unique minimal fair safe-sufficient restriction Es can

be computed in polynomial time for parity objective Φ,
whereas computation of a minimal live-sufficient restric-
tion El is NP-hard already for Büchi specifications. There
is a polynomial time algorithm for finding a locally mini-
mal live-sufficient restriction El for parity specifications.

Implementation. Consider a call to FindAssumptions with
input Ci, Ai, Gi, and Φi. The procedure first checks if Ci can
realize the specification 〈Ai B Φi BGi〉. If so, it returns the
set of all output strings of C1−i: all environment behaviors
are allowed.

Otherwise, using Theorem IV.5, FindAssumptions com-
putes the minimal fair safe-sufficient restriction Es and a
locally minimal live-sufficient restriction El for the winning
condition 〈TrueB Φi BGi〉. The reason we replaced Ai with
True in this case is to avoid the trivial case when Ci real-
izes 〈Ai B Φi BGi〉 with the contradictory assumption that
demands Ai be violated.

Next, FindAssumptions under-approximates the liveness
assumption ΨEl

by a safety language ΨEl→s
as outlined in

the following. First we introduce some notation. For the live-
sufficient restriction El and for a given state x ∈ Xi, we use
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the notation El(x) to denote the set {y ∈ Yi | (x, y) ∈ El}.
We assume that the elements of the set El has been assigned
some index, and we use the notation El(x)i to denote the i-th
element of the set El(x). We use the notation |El(x)| to denote
the cardinality of the set El(x). The set ΨEl→s

is the set of all
output words w ∈ Y1−i

ω produced by C1−i which satisfy the
following: (a) there exists a run ρ (for some set of strategies) of
Ci with w = projY1−i

(ρ), and (b) for all x ∈ domEl, every
j-th occurrence of x in the projection projXi

(ρ) should be
immediately followed by El(x)k where k = j mod |El(x)|.
The procedure FindAssumptions returns the safety language
ΨEs

∩ΨEl→s
.

In the following theorem, we formally state the properties
of the procedure FindAssumptions .

Theorem IV.6. Let the language returned by the procedure
FindAssumptions(C,A,G,Φ) be Ψ. The following asser-
tions hold:

1) The language Ψ is a sufficient assumption for the speci-
fication 〈AB ΦBG〉.

2) When 〈TrueB ΦBG〉 is a safety language, Ψ is a uni-
versally maximally permissive and sufficient assumption
for the specification 〈TrueB ΦBG〉.

Proof. (1) Suppose FindAssumptions returns the language
Ψ := ΨEs ∩ ΨEl→s

. Let Ψ′ := ΨEs ∩ ΨEl
. First we

show that Ψ is a sufficient assumption for the specifi-
cation 〈TrueB ΦBG〉. By Thm. IV.5.3, we have that Ψ′

is a sufficient assumption for realizing the specification
〈TrueB ΦBG〉. We show that ΨEl→s

⊆ ΨEl
, which would

imply that Ψ ⊆ Ψ′, which in turn would establish that Ψ is also
a sufficient assumption. For every valid run ρ of the underlying
game graph belonging to the set ΨEl→s

, for every visit of a
state s ∈ domEl, the environment chooses edges from El

in a round-robin fashion. This trivially implies that the strong
fairness condition in ΨEl

is satisfied by ρ, and hence ρ ∈ ΨEl
.

This proves the claim ΨEl→s
⊆ ΨEl

, and it is established that
Ψ is a sufficient assumption for 〈TrueB ΦBG〉.

Now we show that Ψ is also a sufficient assumption for the
specification 〈AB ΦBG〉. There are either of the following
two ways that 〈AB ΦBG〉 can be satisfied by the system:
(i) The specification Φ ∧G ≡ 〈TrueB ΦBG〉 always holds.

(ii) There exists a finite run r ≡ x0
w0,u0

−−−−→ x1 → . . . xk

compliant with π, such that projX(r) ∈ pref(G), and
projV (r) /∈ pref(A).
This shows that 〈AB ΦBG〉 is a weakening of the speci-
fication 〈TrueB ΦBG〉 for any ∅ ( A ⊆ Yi

ω . Since the
component can realize Ψ ⇒ 〈TrueB ΦBG〉, hence it can
also realize Ψ⇒ 〈AB ΦBG〉. Thus, Ψ is indeed a sufficient
assumption for the specification 〈AB ΦBG〉.
(2) When 〈TrueB ΦBG〉 is a safety language, then El = ∅
and as a result Ψ = ΨEs

. The rest follows from the fact that
Es is the minimal fair safe-sufficient restriction .

Note that, due to the non-uniqueness of the locally mini-
mal live-sufficient restriction and the non-uniqueness of the
ordering that we impose on the elements of the set El(x) for
every x, the assumption computed by FindAssumptions is in
general not unique. Nevertheless, owing to the finiteness of the

systems there are only finitely many possible ways to choose
both of these, and as a result the number of assumptions is
also finite. This creates the possibility of extending our basic
negotiation procedure to backtrack and retry with a different
set of assumptions upon failure. Naturally, this finitely branch-
ing negotiation procedure will be relatively more “complete”
than the non-branching procedure Negotiate. However, for a
cleaner exposition of the main theory and as a first step, in
this paper we only focus on the non-branching version with
a focus on “soundness”, and plan to work in future on the
branching version with a focus on “relative completeness”.

V. IMPLEMENTATION AND APPROXIMATIONS

We have built a prototype C++-based tool called Agnes that
implements the negotiation algorithm. Agnes is freely avail-
able at https://github.com/kmallik/Agnes. The name Agnes
stands for Assume-Guarantee NEgotiation for distributed
Synthesis. Agnes accepts descriptions of the systems and the
local specifications in a list representation (list of states, list
of transitions, etc.) given as text files. At the moment, the
tool only supports safety and deterministic Büchi conditions as
local specifications. If the negotiation is successful, Agnes out-
puts contracts where the guarantees (same as assumptions of
the other systems) are modeled as finite automata, also stored
using a list representation or in DOT format for visualization.

We have implemented a number of heuristics on top the
general algorithm for better performance. We describe the
main ones below.

A. Pattern-based Under-approximation of Assumptions

Because the construction of Thm. IV.4 depends on the sizes
of these automata, we now discuss a heuristic that tries to
find small automata. Observe that if C realizes 〈AB ΦBG〉,
then it also realizes 〈A′ B ΦBG〉 for any A′ ⊆ A. Thus,
we heuristically find stronger assumptions that can be imple-
mented by smaller automata. The intuition behind our heuristic
is that we assume bad behaviors of the environment (those that
do not satisfy the safety assumption) can be identified by a set
of short unsafe suffixes: as long as the environment does not
produce these short suffixes, the assumption continues to hold.
It is inspired by the notion of l-completeness in control [27],
which abstracts a system by only tracking the states visited in
the last l steps.

Our heuristic works as follows. First, we note that, because
the assumption is a safety language, the FindAssumptions
procedure returns a universal Büchi automaton over words
for a prefix-closed ω-language. Since the language is prefix-
closed, the automaton has a single rejecting sink state, and
all other states are accepting. We can dualize this automaton
to get a non-deterministic Büchi automaton for the negation
of the language. In the negation, the sink state is the only
accepting state. Let us call this automaton A.

Given A and a (user-supplied) parameter k, we now con-
struct an automaton B that accepts a superset of the language
of A. The automaton B keeps all states of A that have
some path of length at most k to the unique accepting state
and merges all states for which the shortest path to the

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TCAD.2020.3012641

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

https://github.com/kmallik/Agnes


10

accepting state is greater than k. Formally, QB = {q ∈ QA |
∃ path from q to the accepting state of length ≤ k}∪{r}, for
a new state r. Consider a mapping λ : QA → QB that maps the
subset QB \{r} identically to itself and maps every other state
to r. The transitions of B consist of transitions (λ(q), a, λ(q′))
for each transition (q, a, q′) in A. The initial and final states
of B are the map of the initial and final states of A under λ.

Clearly, the number of states in B is less than or equal to
that of A and L(A) ⊆ L(B). Finally, we dualize B to get back
a universal Büchi automaton that accepts the new assumption
which is contained in the original assumption.

While this heuristic that the bad environment behaviors can
be identified by short suffixes might not work in general, it
worked well in our examples.

B. Büchi Specifications
We now present an optimization that is orthogonal to

the one presented in Sec. V-A. Recall that the procedure
FindAssumptions requires computation of locally minimal
live-sufficient restriction, for which we used the algorithm
proposed by Chatterjee et al. [15]. Here we present a greedy
algorithm for the same purpose, but for the special case
when the specification of the system C̃ in Thm. IV.4 can be
represented as a Büchi condition �♦B for some B ⊆ X̃.
Already for this case, computing the minimal live-sufficient
restriction is NP-hard [15, Thm. 11]. The algorithm presented
by Chatterjee et al. [15] to compute a locally minimal live-
sufficient restriction takes O(n6) time, where n is the size of
the state space. Our greedy algorithm runs in time O(n3).

We introduce some notation before presenting our algo-
rithm. Fix a composition C0 ‖ C1 and a specification
〈A0 B Φ0 BG0〉 for the system C0. Consider a Büchi speci-
fication �♦B for some B ⊆ X̃0, where X̃0 is the state space
of the product system C̃0 as defined in Thm. IV.4. Let El

be a live-sufficient restriction, and AssumeFair(El,�♦B) be
the set of infinite sequences of states x0x1 . . . s.t. there exists
a strategy π of C0 and a joint strategy π′ of C1 and the
environment s.t. projX̃0

(ρ(π, π′)) = x0x1 . . . and x0 = x̃in0,
and moreover either (a) there exists a pair (x,w) ∈ El

s.t. in the run ρ(π, π′), x appears infinitely often but after
some finite time step, w never immediately follows x, or (b)
projX̃0

(ρ(π, π′)) ∈ Φ.
Proc. 2 uses a greedy algorithm to compute a live-sufficient

restriction El: the algorithm progressively expands the real-
izable region for ♦B by greedily adding all the favorable
restrictions on C1 to El whenever needed.

The heuristic does not generalize to other ω-regular specifi-
cations. Recall that in µ-calculus notation, the Büchi fixpoint
is written as follows [25]:

Z∗ = νZ . µY . Cpre(Y ) ∨ (Cpre(Z) ∧B),

where Cpre : 2X → 2X, Cpre : S 7→ {x ∈ X | ∃u ∈
U . ∀w ∈W . δ(x,w, u) ∈ S} is the controllable predecessor
operator, and Z∗ is the final Büchi winning region. In Proc. 2,
we exploited the fact that when C1 co-operates with C0, Z∗ is
a priori known to be the set 〈〈C0, C1〉〉�♦B. Then the problem
gets simplified to finding a locally minimal live-sufficient re-
striction El s.t. C0 can (independently) realize the conditional

Procedure 2 Compute a live-sufficient restriction El

Input: System C0 in the composition C0 ‖ C1, Büchi states
B ⊆ X0

Output: A live-sufficient restriction El on C1, or
DoesNotExist

1: if xin0 /∈ 〈〈C0, C1〉〉�♦B then
2: return DoesNotExist
3: end if
4: Target ← B ∩ 〈〈C0, C1〉〉�♦B
5: WinDom ← 〈〈C0〉〉♦Target
6: El ← ∅
7: while AssumeFair(El,�♦B) is not realizable do
8: El ← El ∪ {(x, y) ∈ (X0 × Y1) |

x /∈WinDom ∧ ∃u ∈ U0 . ∀w ∈W0 \Y1 .
δ0(x, (w, y), u) ∈WinDom

∧∃y′ ∈ Y1 . ∀u ∈ U0 . ∃w ∈W0 \Y1 .
δ0(x, (w, y′), u) /∈WinDom}

9: Target ←WinDom ∪ domEl

10: WinDom ← 〈〈C0〉〉♦Target
11: end while
12: return El

reachability problem AssumeFair(El,♦(Cpre(Z∗)∩B)). We
solve this problem by iterating through a growing sequence
of El, where in each iteration we add those environment
behaviors to El which would immediately help to grow the
winning region for ♦(Cpre(Z∗) ∩ B). While this heuristic
works well for the Büchi specification, it will not work so well
for every other ω-regular specification. Already for co-Büchi
specifications, where the order of the “µ” and “ν” iterations
gets reversed, this heuristic is not suitable.

VI. EXPERIMENTAL EVALUATION

A. Notation

Before summarizing the experimental results, let us in-
troduce some notation. Given a system Ci and a contract
(Ai, Gi), we use |Gi| to represent the size of the state space
of the universal Büchi automaton which accepts the language
Gi. We use the parameter k to represent the user-supplied
parameter used to determine the level of minimization used
for minimizing the size of the contracts (see Sec. V-A): we
start with k = 1 and then keep increasing the value of k until
a pair of compatible contracts is found, or until a point when
we realize that increasing k any more would not change the
outcome, whichever happens earlier. We use the status flag S
and F to represent these two situations respectively. Indeed,
it was found while inspecting the examples that the cases
with status F do not have a contract that can be represented
using a safe under-approximation of the universally maximally
permissive assumptions. We put a cross mark (“×”) for the
entries |G0| and |G1| in all the failed cases as they are
irrelevant.

The experimental results are going to be summarized in
Table I and Table II. The key highlight in the tables is that the
pattern-based minimization of the assumptions (see Sec. V-A)
turns out to be extremely beneficial while performing the
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TABLE I: Experimental evaluation of the distributed packet sending problem.

l0, p0, t0 l1, p1, t1 |X0| |X1|
No pattern-based opt Pattern-based optimization (Sec. V-A)

k = 1 k = 2 k = 3 k = 4 k = 5
time(s) status time(s) status time(s) status time(s) status time(s) status time(s) status
|G0| |G1| |G0| |G1| |G0| |G1| |G0| |G1| |G0| |G1| |G0| |G1|

(1, 1, 1) (0, 1, 1) 5 3
< 0.001 F 0.001 F
× × × ×

(1, 1, 2) (0, 1, 1) 7 3
0.001 S 0.001 S
2 4 2 2

(1, 1, 2) (1, 1, 3) 7 9
0.004 S 0.001 F < 0.001 F 0.003 S
5 4 2 2 2 3 4 4

(2, 2, 4) (1, 1, 3) 35 9
0.018 S < 0.001 F 0.001 F 0.010 S
5 8 2 2 2 5 4 6

(2, 2, 5) (1, 1, 3) 43 9
0.112 S 0.002 F 0.002 F 0.027 S
8 11 2 2 2 5 4 6

(2, 2, 5) (2, 2, 5) 43 43
0.085 S 0.001 F 0.002 F 0.003 F 0.066 S
6 11 2 2 2 5 2 6 5 11

(3, 3, 14) (2, 2, 8) 255 67
18.996 S 0.006 F 0.007 F 0.011 F 0.312 S
40 99 2 2 2 6 2 16 5 17

(4, 3, 14) (3, 2, 8) 339 99
42.254 S 0.007 F 0.010 F 0.023 F 0.027 F 14.967 S
47 129 2 2 2 6 2 22 2 23 18 129

TABLE II: Experimental evaluation of the tandem queuing network example.

t0 p, t1 |X0| |X1|
No pattern-based opt Pattern-based optimization (Sec. V-A)

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7
time(s) status time(s) status time(s) status time(s) status time(s) status time(s) status time(s) status time(s) status
|G0| |G1| |G0| |G1| |G0| |G1| |G0| |G1| |G0| |G1| |G0| |G1| |G0| |G1| |G0| |G1|

3 (1, 1) 8 4
0.055 S 0.002 F 0.002 F 0.006 F 0.055 S
15 6 2 2 2 3 5 4 15 6

3 (2, 1) 8 6
0.073 S 0.002 F 0.002 F 0.008 F 0.076 S
17 6 2 2 2 3 5 4 17 6

3 (2, 2) 8 8
0.008 F 0.027 F
× × × ×

4 (2, 2) 10 8
0.262 S 0.003 F 0.003 F 0.006 F 0.031 S
32 9 2 2 2 3 2 4 7 5

4 (3, 2) 10 10
0.019 F 0.079 F
× × × ×

5 (3, 2) 12 8
1.076 S 0.003 F 0.003 F 0.007 F 0.013 F 0.065 S
62 13 2 2 2 3 2 4 2 5 9 6

5 (3, 3) 12 12
0.030 F 0.109 F
× × × ×

7 (3, 3) 16 12
1.560 S 0.004 F 0.004 F 0.008 F 0.010 F 0.013 F 1.456 F 0.150 S
13 8 2 2 2 3 2 4 2 5 2 6 48 26 13 8

negotiation. In the table, the red cells show the computation
time when this optimization was disabled, whereas the blue
cells show the computation time for the smallest value of k for
which the negotiation was successful. It can be observed that
as the systems’ state spaces get larger, the saving gets higher.
Also, observe the difference in the sizes of the contracts: when
this optimization is disabled, the contract sizes (given by |G0|
and |G1|) tend to be much higher.

B. A Distributed Packet Sending Problem

Our first example is a parameterized and scaled up version
of the distributed packet sending problem introduced in Sec. II.
The parameters for the system Ci with i ∈ {0, 1} are given
by: 1) Number of packets to be sent li, 2) maximum delay
between two consecutive packet transmissions pi, and 3) the
overall time limit to send all the packets ti. Essentially the only
difference with the additional parameters li and pi is that there
are two additional counters in the state space to keep track
of the respective constraints. In addition to the state done ,
there is one more special sink state called excessive-delay to
mark the event that the elapsed time between two consecutive
transmissions exceeded the allowed bound pi. Then the local

specification Φi for each system can be formalized as ♦(s =
done). Table I summarizes the experimental results.

C. A Distributed Tandem Queuing Network Problem

Our second example is a tandem queuing network similar
to the one used in [21]. Suppose there is a shared queue of
bounded size. There is a system C0 that pushes objects to the
queue from one end, and there is a system C1 that pops an
object at a time from the other end for processing. System
C0 can only sense if the queue is full or not, has two control
actions push and wait0, and produces two outputs busy and
idle0 which represent whether C0 pushed or waited in the
last cycle respectively. If the queue is full then C0 is forced
to wait until C1 draws the next object. On the other hand,
system C1 can only sense if the queue is empty or not, has
three control actions draw , wait1, and process , and produces
three outputs loaded , idle1, and processing which represent
whether C1 drew an object, waited, or processed an object in
the last clock cycle respectively. If the queue is empty, then
C1 is forced to stay idle until an object appears in the queue.
Let p be some given positive parameter. If the queue is not
empty, then C1 can draw an object, in which case it has to
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perform p number of actions on the object before being able
to draw another one.

Note that none of the processes has the exact information
of the size of the queue. As a result they cannot certainly
predict if the queue is going to be full/empty in the next
step just by observing their own and the other component’s
output sequences. We model this uncertainty by introducing
an imaginary environment player, who can control when the
queue is full and when it is empty in an unpredictable manner.

Let t0 and t1 be two positive parameters. We introduce
two special events for formalizing the specification: (a) Sys-
tem C0 goes to the shut-down state if it remains idle for
t0 consecutive time steps and (b) system C1 goes to the
cool -down state if it remains idle for t1 consecutive time
steps. The local specifications Φ0 and Φ1 of C0 and C1 are
respectively: Φ0 = �¬shut-down and Φ1 = �♦cool -down .
Table II summarizes the experimental results.

VII. FUTURE WORK AND CONCLUSION

We have presented a sound procedure for the distributed
reactive synthesis problem with two communicating systems.
The outcome of our procedure is a pair of safe assume-
guarantee contracts. The contracts decompose the synthesis
problem: each system realizes its own local specification under
the contract in a modular fashion. We model the contract
synthesis procedure as a negotiation process; the two systems
take turns on computing a minimal set of additional favorable
behaviors that should be ensured by the other system.

We have presented our procedure for two communicating
systems. However, as our method generates assume-guarantee
contracts which do not require synchronization, it can be
generalized ta an arbitrary number of communicating systems.
In that case, instead of going back-and-forth between two
systems, each iteration of the negotiation will have to consider
one system against all the other “neighbors”. The collective
assumption generated on the neighbors will then need to be
projected onto the neighbors’ output alphabets. The negotia-
tion can proceed in a round-robin fashion while the systems
take turns to propose their assumptions, until all of the systems
can realize their contracts.

We presented a prototype implementation of our method
that supports safety and deterministic Büchi specifications. We
are planning to extend this tool to synthesize contracts for
larger examples with general ω-regular specifications.

In some situations live contracts are the appropriate choice,
as opposed to the safe contracts that we consider in this paper.
We leave this generalization to future work.
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